211
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

The bioactivity of titanium-cuttlefish bone-derived hydroxyapatite composites sintered at low temperature

ORCID Icon, , ORCID Icon, &
Pages 300-310 | Received 01 Oct 2019, Accepted 28 Jul 2020, Published online: 12 Aug 2020

References

  • Rack H, Qazi J. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26(8):1269–1277. doi: 10.1016/j.msec.2005.08.032
  • Okazaki Y, Rao S, Tateishi T, et al. Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mater Sci Eng A. 1998;243(1):250–256. doi: 10.1016/S0921-5093(97)00809-5
  • Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33A:477–486. doi: 10.1007/s11661-002-0109-2
  • Huang S, Zhou K, Huang B, et al. Preparation of an electrodeposited hydroxyapatite coating on titanium substratesuitable for in-vivo applications. J Mater Sci Mater Med. 2008;19:437–442. doi: 10.1007/s10856-006-0104-z
  • Zhao L, Chu PK, Zhang Y, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91(1):470–480. doi: 10.1002/jbm.b.31463
  • Dujovne AR, Bobyn JD, Krygier JJ, et al. Mechanical compatibility of noncemented hip prostheses with the human femur. J Arthroplast. 1993;8:7–22. doi: 10.1016/S0883-5403(06)80102-6
  • Kumar A, Biswas K, Basu B. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications. J Biomed Mater Res A. 2015;103A:791–806. doi: 10.1002/jbm.a.35198
  • Eriksson M, Andersson M, Adolfsson E, et al. Titanium–hydroxyapatite composite biomaterial for dental implants. Powder Metall. 2006;49:70–77. doi: 10.1179/174329006X94591
  • Nath S, Tripathi R, Basu B. Understanding phase stability, microstructure development and biocompatibility in calcium phosphate-titania composites, synthesized from hydroxyapatite and titanium powder mix. Mater Sci Eng C. 2009;29(1):97–107. doi: 10.1016/j.msec.2008.05.019
  • Weng J, Liu X, Zhang X, et al. Thermal decomposition of hydroxyapatite structure induced by titanium and its oxides. J Mater Sci Lett. 1994;13:159–161. doi: 10.1007/BF00278148
  • Nayak SK, Hung CJ, Sharma V, et al. Insight into point defects and impurities in titanium from first principles. NPJ Comput Mater. 2018;4:11–21. doi: 10.1038/s41524-018-0068-9
  • Kumar A, Krishanu B, Basu B. On the toughness enhancement in hydroxyapatite-based composites. Acta Mater. 2013;61:5198–5215. doi: 10.1016/j.actamat.2013.05.013
  • Rastgoo MJ, Razavi M, Salahi E, et al. Sprak plasma sintering behaviour of hydroxyapatite–titanium nano-composite. J Aust Ceram Soc. 2017;53:449–455. doi: 10.1007/s41779-017-0054-6
  • Popa C, Simon V, Vida-Simiti I, et al. Titanium—hydroxyapatite porous structures for endosseous applications. J Mater Sci Mater Med. 2005;16:1165–1171. doi: 10.1007/s10856-005-4724-5
  • Milovac D, Gamboa-Martínez TC, Ivankovic M, et al. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies. Mater Sci Eng C. 2014;42:264–272. doi: 10.1016/j.msec.2014.05.034
  • Cozza N, Monte F, Bonani W, et al. Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass® co-sintered bioceramics. J Tissue Eng Regen Med. 2017;1–12.
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017
  • Robertson IM, Schaffer GB. Comparison of sintering of titanium and titanium hydride powders. Powder Metall. 2010;53:12–19. doi: 10.1179/003258909X12450768327063
  • Barralet J, Knowles JC, Best S, et al. Thermal decomposition of synthesised carbonate hydroxyapatite. J Mater Sci Mater Med. 2002;13:529–533. doi: 10.1023/A:1015175108668
  • Chu C, Xue X, Zhu J, et al. Fabrication and characterization of titanium-matrix composite with 20 vol% hydroxyapatite for use as heavy load-bearing hard tissue replacement. J Mater Sci Mater Med. 2006;17:245–251. doi: 10.1007/s10856-006-7310-6
  • Rogina A, Antunović M, Milovac D. Biomimetic design of bone substitutes based on cuttlefish bone-derived hydroxyapatite and biodegradable polymers. J Biomed Mater Res Part B. 2019;107B:197–204. doi: 10.1002/jbm.b.34111
  • Tkalčec E, Popović J, Orlić S, et al. Hydrothermal synthesis and thermal evolution of carbonate- fluorhydroxyapatite scaffold from cuttlefish bones. Mater Sci Eng C. 2014;42:578–586. doi: 10.1016/j.msec.2014.05.079
  • Meguid SA. Mechanics and mechanisms of toughening of advanced ceramics. J Mater Process Technol. 1996;56:978–989. doi: 10.1016/0924-0136(95)01909-X
  • Tulyaganov D, Abdukayumov K, Ruzimuradov O, et al. Effect of alumina incorporation on the surface mineralization and degradation of a bioactive glass (CaO-MgO-SiO2-Na2O-P2O5-CaF2)-glycerol paste. Materials. 2017;10:1324–1339. doi: 10.3390/ma10111324
  • Arifin A, Sulong AB, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater Design. 2014;55:165–175. doi: 10.1016/j.matdes.2013.09.045
  • Azevedo CRF, Rodrigues D, Beneduce Neto F. Ti–Al–V powder metallurgy (PM) via the hydrogenation–dehydrogenation (HDH) process. J Alloys Compd. 2003;353:217–227. doi: 10.1016/S0925-8388(02)01297-5
  • Ivasishin OM, Savvakin DG, Moxson VS, et al. Titanium powder metallurgy for automotive components. Mater Technol Adv Perform Mater. 2002;17:20–25.
  • Nyberg E, Miller M, Simmons K, et al. Microstructure and mechanical properties of titanium components fabricated by a new powder injection molding technique. Mater Sci Eng C. 2005;25:336–342. doi: 10.1016/j.msec.2005.04.006
  • Omidi N, Jabbari AH, Sedighi M. Mechanical and microstructural properties of titanium/hydroxyapatite functionally graded material fabricated by spark plasma sintering. Powder Metall. 2018;61:417–427. doi: 10.1080/00325899.2018.1535391
  • Simbi DJ, Scully JC. The effect of residual interstitial elements and iron on mechanical properties of commercially pure titanium. Mater Lett. 1996;26:35–39. doi: 10.1016/0167-577X(95)00204-9
  • Cantelli R, Szkopiak ZC. Effects of interstitial oxygen and nitrogen on the mechanical properties of niobium-titanium alloys. Appl Phys. 1976;9:253–257. doi: 10.1007/BF00900613
  • Conrad H. Effects of interstitial solutes on the strength and ductility of titanium. Progress Mater Sci. 1981;26:123–403. doi: 10.1016/0079-6425(81)90001-3
  • Mohd Pu’ad NAS, Koshy P, Abdullah HZ, et al. Syntheses of hydroxyapatite from natural sources. Heliyon. 2019;5:01588–01602. doi: 10.1016/j.heliyon.2019.e01588
  • Li Y, Wong C, Xiong J, et al. Cytotoxicity of titanium and titanium alloying elements. J Dent Res. 2010;89:493–497. doi: 10.1177/0022034510363675

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.