224
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Dry sliding behaviour of composite friction materials with varying iron and copper content prepared using the spark plasma sintering technique

, , &
Pages 39-51 | Received 27 Apr 2021, Accepted 05 Jun 2021, Published online: 24 Jun 2021

References

  • Xiao Y, Yao P, Fan K, et al. Powder metallurgy processed metal-matrix friction materials for space applications. 2017.
  • Kwabena Gyimah G, Chen D, Huang P, et al. Dry sliding friction and wear study of the worn surface of Cu-based powder metallurgy train brake materials. Int J Sci Eng Res. 2013;4(4):826–832.
  • Jamwal A, Seth PP, Kumar D, et al. Microstructural, tribological and compression behaviour of copper matrix reinforced with graphite-SiC hybrid composites. Mater Chem Phys. 2020;251:123090.
  • Kwabena Gyimah G, Huang P, Chen D. Dry sliding wear studies of copper-based powder metallurgy brake materials. J Tribol. 2014;136(4):041601.
  • Ping Yao P, chao Sheng H, Xiong X, et al. Worn surface characteristics of Cu-based powder metallurgy bake materials for aircraft. Trans Nonferrous Met Soc China. 2007;17(1):99–103.
  • Xiong X, Chen J, Yao P, et al. Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials. Wear. 2007;262(9–10):1182–1186.
  • Lee JJ, Lee JA, Kwon S, et al. Effect of different reinforcement materials on the formation of secondary plateaus and friction properties in friction materials for automobiles. Tribol Int. 2018;120:70–79.
  • Xiao Y, Zhang Z, Yao P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol Int. 2018;119:585–592.
  • Çeliktaş E, Topuz A, Kazancı Z. Friction and wear behaviors of aircraft brake linings material. Aircr Eng Aerosp Technol. 2012;84(5):279–286.
  • Moustafa SF, El-Badry SA, Sanad AM, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders. Wear. 2002;253(7–8):699–710.
  • Jamwal A, Prakash P, Kumar D, et al. Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–graphite hybrid composites. J Compos Mater. 2019;53(18):2545–2553.
  • Sterle W, Prietzel C, Kloß H, et al. On the role of copper in brake friction materials. Tribol Int. 2010;43(12):2317–2326.
  • Ma XC, He GQ, He DH, et al. Sliding wear behavior of copper-graphite composite material for use in maglev transportation system. Wear. 2008;265(7–8):1087–1092.
  • Davis AP, Shokouhian M, Ni S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere. Aug. 2001;44(5):997–1009.
  • Wahlström J, Olander L, Olofsson U. Size, shape, and elemental composition of airborne wear particles from disc brake materials. Tribol Lett. Apr. 2010;38(1):15–24.
  • Barlow C, Bendell LI, Duckham C, et al. Three-dimensional profiling reveals trace metal depositional patterns in sediments of urban aquatic environments: a case study in Vancouver, British Columbia, Canada. Water Air Soil Pollut. Feb. 2014;225(2):1856.
  • Sandahl JF, Baldwin DH, Jenkins JJ, et al. A sensory system at the interface between urban stormwater runoff and salmon survival. Environ Sci Technol. Apr. 2007;41(8):2998–3004.
  • Franco R, Sánchez-Olea R, Reyes-Reyes EM, et al. Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutat Res Toxicol Environ Mutagen. Mar. 2009;674(1–2):3–22.
  • Lund AK, Lucero J, Lucas S, et al. Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1–mediated pathways. Arterioscler Thromb Vasc Biol. Apr. 2009;29(4):511–517.
  • Araujo JA, Nel AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol. 2009;6(1):24.
  • Gasser M, Riediker M, Mueller L, et al. Toxic effects of brake wear particles on epithelial lung cells in vitro. Part Fibre Toxicol. 2009;6(1):30.
  • Straffelini G, Ciudin R, Ciotti A, et al. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: a critical assessment. Environ Pollut. 2015;207:211–219.
  • Szwalec A, Mundała P, Kędzior R, et al. Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environ Monit Assess. Mar. 2020;192(3):155.
  • Peng T, Yan Q, Li G, et al. The influence of Cu/Fe ratio on the tribological behavior of brake friction materials. Tribol Lett. 2018;66:1.
  • Zheng Y, Liu Y, Zheng F, et al. Effects of iron content on tribological properties of Cu-Fe-based friction material. Ind Lubr Tribol. 2019;71(5):718–723.
  • Gupta P, Kumar D, Parkash O, et al. Structural and mechanical behaviour of 5% Al2O3-reinforced Fe metal matrix composites (MMCs) produced by powder metallurgy (P/M) route. Bull Mater Sci. 2013;36(5):859–868.
  • Gupta P, Kumar D, Parkash O, et al. Effect of sintering on wear characteristics of Fe-Al2O3 metal matrix composites. Proc Inst Mech Eng Part J Eng Tribol. 2014;228(3):362–368.
  • Jha P, Gupta P, Kumar D, et al. Synthesis and characterization of Fe-ZrO2 metal matrix composites. J Compos Mater. 2014;48(17):2107–2115.
  • Gupta P, Kumar D, Parkash O, et al. Dependence of wear behavior on sintering mechanism for iron-alumina metal matrix nanocomposites. Mater Chem Phys. 2018;220:441–448.
  • Sharma S, Jain R, Rawat V, et al. Structural and mechanical characterization of re-pressed and annealed iron-alumina metal matrix nanocomposites. J Compos Mater. 2018;52(11):1541–1556.
  • Jayashree P, Bortolotti M, Turani S, et al. High-temperature tribo-oxidative wear of a Cu-based metal-matrix composite dry sliding against heat-treated steel. Tribol Lett. 2019;67(4):1–12.
  • Jayashree P, Federici M, Bresciani L, et al. Effect of steel counterface on the dry sliding behaviour of a Cu-based metal matrix composite. Tribol Lett. 2018;66:4.
  • Stott FH, Jordan MP. The effects of load and substrate hardness on the development and maintenance of wear-protective layers during sliding at elevated temperatures. Wear. 2001;250–251:391–400.
  • Zhou H, Yao P, Xiao Y, et al. Tribology international friction and wear maps of copper metal matrix composites with different iron volume content. Tribiol Int. 2019;132:199–210.
  • Diouf S, Molinari A. Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol. 2012;221:220–227.
  • Kellogg F, McWilliams B, Sietins J, et al. Comparison of SPS processing behavior between as atomized and cryomilled aluminum alloy 5083 powder. Metall Mater Trans A Phys Metall Mater Sci. 2017;48(11):5492–5499.
  • Maki RSS, Mitani S, Mori T. Effect of spark plasma sintering (SPS) on the thermoelectric properties of magnesium ferrite. Mater Renew Sustain Energy. 2017;6(1):2–9.
  • Mackie AJ, Hatton GD, Hamilton HGC, et al. Carbon uptake and distribution in Spark Plasma Sintering (SPS) processed Sm(Co, Fe, Cu, Zr)z. Mater Lett. 2016;171:14–17.
  • Wells C, Batz W, Mehl RF. Diffusion coefficient of carbon in austenite. JOM. 1950;2(3):553–560.
  • Callister WD, Rethwisch DG. Fundamentals of materials science and engineering: an integrated approach. 2018.
  • Jayashree P, Turani S, Straffelini G. Effect of temperature and sliding speed on the dry sliding behavior of a SiC-graphite composite against martensitic steel. Wear. 2020;450–451:203553.
  • Jayashree P, Turani S, Straffelini G. Effect of testing conditions on the dry sliding behavior of a Cu-based refractory composite material. Tribol Int. 2019;140:105850.
  • Altomare A, Corriero N, Cuocci C, et al. QUALX2.0: a qualitative phase analysis software using the freely available database POW-COD. J Appl Crystallogr. 2015;48:598–603.
  • Gražulis S, Daškevič A, Merkys A, et al. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucl Acids Res. 2012;40(D1):420–427.
  • Lutterotti L, Bortolotti M, Ischia G, et al. Rietveld texture analysis from diffraction images. Zeitschrift fur Krist Suppl. 2007;1(26):125–130.
  • Bortolotti M, Lutterotti L, Pepponi G. Combining XRD and XRF analysis in one Rietveld-like fitting. Powder Diffr. 2017;32(S1):S225–S230.
  • Dünkel L. The Rietveld method. Zeitschrift für Phys Chem. 1996;196(Part_2):280–281.
  • Straffelini G. Friction and wear: methodologies for design and control. 2015.
  • Diouf S, Menapace C, D’Incau M, et al. Spark plasma sintering of cryomilled copper powder. Powder Metall. 2013;56(5):420–426.
  • Menapace C, Cipolloni G, Hebda M, et al. Spark plasma sintering behaviour of copper powders having different particle sizes and oxygen contents. Powder Technol. 2016;291:170–177.
  • Straffelini G, Maines L, Pellizzari M, et al. Dry sliding wear of Cu-Be alloys. Wear. 2005;259(1–6):506–511.
  • Zhou H, Yao P, Xiao Y, et al. Friction and wear maps of copper metal matrix composites with different iron volume content. Tribol Int. 2019;132:199–210.
  • Xiao X, Yin Y, Bao J, et al. Review on the friction and wear of brake materials. Adv Mech Eng. 2016;8(5):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.