325
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Nb Content and water quenching on microstructure and mechanical properties of Ti-Nb alloys fabricated by spark plasma sintering

, ORCID Icon, & ORCID Icon
Pages 426-438 | Received 05 Oct 2021, Accepted 08 Jan 2022, Published online: 28 Jan 2022

References

  • Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4:445–454. doi:10.1016/j.stam.2003.09.002.
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243:231–236. doi:10.1016/S0921-5093(97)00806-X.
  • Eisenbarth E, Velten D, Müller M, et al. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–5713. doi:10.1016/j.biomaterials.2004.01.021.
  • López MF, Jiménez JA, Gutiérrez A. Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim Acta. 2003;48:1395–1401. doi:10.1016/S0013-4686(03)00006-9.
  • Okazaki Y. Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials. 2002;23:2071–2077. doi:10.1016/S0142-9612(01)00337-4.
  • Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011;2011:836587, doi:10.1155/2011/836587.
  • Ozaki T, Matsumoto H, Watanabe S, et al. Beta Ti alloys with low Young's modulus. Mater Trans. 2004;45:2776–2779. doi:10.2320/matertrans.45.2776.
  • Weng W, Biesiekierski A, Li Y, et al. Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications. Materialia. 2019;6:100323, doi:10.1016/j.mtla.2019.100323.
  • Lee CM, Ju CP, Chern Lin JH. Structure–property relationship of cast Ti–Nb alloys. J Oral Rehabil. 2002;29:314–322. doi:10.1046/j.1365-2842.2002.00825.x.
  • Boyer R, Collings EW, Welsch G, et al. Materials properties handbook: titanium alloys. Novelty (OH): ASM International. 1994; ISBN: 978-0-87170-481-8.
  • Afonso CRM, Aleixo GT, Ramirez AJ, et al. Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Mater Sci Eng. C. 2007;27:908–913. doi:10.1016/j.msec.2006.11.001.
  • Zhou Y-L, Luo D-M. Microstructures and mechanical properties of Ti–Mo alloys cold-rolled and heat treated. Mater Charact. 2011;62:931–937. doi:10.1016/j.matchar.2011.07.010.
  • Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A. 1998;243:244–249. doi:10.1016/S0921-5093(97)00808-3.
  • Kolli RP, Devaraj A. A review of Metastable beta titanium alloys. Metals. 2018;8; doi:10.3390/met8070506.
  • Ho WF, Ju CP, Chern Lin JH. Structure and properties of cast binary Ti–Mo alloys. Biomaterials. 1999;20:2115–2122. doi:10.1016/S0142-9612(99)00114-3.
  • Fikeni L, Annan KA, Mutombo K, et al. Effect of Nb content on the microstructure and mechanical properties of binary Ti-Nb alloys. Mater Today Proc. 2020; doi:10.1016/j.matpr.2020.05.315.
  • Hon Y-H, Wang J-Y, Pan Y-N. Composition/phase structure and properties of titanium-niobium alloys. Mater Trans. 2003;44:2384–2390. doi:10.2320/matertrans.44.2384.
  • Zhao D, Chang K, Ebel T, et al. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial. J Alloys Compd. 2015;640:393–400. doi:10.1016/j.jallcom.2015.04.039.
  • Zhou YL, Niinomi M, Akahori T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications. Mater Sci Eng A. 2004;371:283–290. doi:10.1016/j.msea.2003.12.011.
  • Ning C, Ding D, Dai K, et al. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti–35Nb– x Zr alloys. Biomed Mater. 2010;5:045006), doi:10.1088/1748-6041/5/4/045006.
  • Zou LM, Yang C, Long Y, et al. Fabrication of biomedical Ti–35Nb–7Zr–5Ta alloys by mechanical alloying and spark plasma sintering. Powder Metall. 2012;55:65–70. doi:10.1179/1743290111Y.0000000021.
  • Delvat E, Gordin DM, Gloriant T, et al. Microstructure, mechanical properties and cytocompatibility of stable beta Ti–Mo–Ta sintered alloys. J Mech Behav Biomed Mater. 2008;1:345–351. doi:10.1016/j.jmbbm.2008.01.006.
  • Yang YF, Qian M. 13 – Spark plasma sintering and hot pressing of titanium and titanium alloys. In: M Qian, FH Froes, editors. Titanium powder metallurgy. Boston (MA): Butterworth-Heinemann; 2015. p. 219–235. https://doi.org/10.1016/B978-0-12-800054-0.00013-7.
  • Annur D, Kartika I, Supriadi S, et al. Titanium and titanium based alloy prepared by spark plasma sintering method for biomedical implant applications – a review. Mater Res Express. 2021;8:012001, doi:10.1088/2053-1591/abd969.
  • Mavros N, Larimian T, Esqivel J, et al. Spark plasma sintering of low modulus titanium-niobium-tantalum-zirconium (TNTZ) alloy for biomedical applications. Mater Des. 2019;183:108163, doi:10.1016/j.matdes.2019.108163.
  • Wang M, Li R, Yuan T, et al. Microstructures and mechanical property of AlMgScZrMn - A comparison between selective laser melting, spark plasma sintering and cast. Mater Sci Eng A. 2019;756:354–364. doi:10.1016/j.msea.2019.04.060.
  • Sharma B, Vajpai SK, Ameyama K. Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder. J Alloys Compd. 2016;656:978–986. doi:10.1016/j.jallcom.2015.10.053.
  • Diouf S, Molinari A. Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol. 2012;221:220–227. doi:10.1016/j.powtec.2012.01.005.
  • Karre R, Kodli BK, Rajendran A, et al. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application. Mater Sci Eng. C. 2019;94:619–627. doi:10.1016/j.msec.2018.10.006.
  • Li YY, Yang C, Chen WP, et al. Effect of WC content on glass formation, thermal stability, and phase evolution of a TiNbCuNiAl alloy synthesized by mechanical alloying. J Mater Res. 2008;23:745–754. doi:10.1557/JMR.2008.0087.
  • Li YY, Yang C, Chen WP, et al. Ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2 composites fabricated by spark plasma sintering and crystallization of amorphous phase. J Mater Res. 2009;24:2118–2122. doi:10.1557/jmr.2009.0231.
  • Li YY, Yang C, Qu SG, et al. Nucleation and growth mechanism of crystalline phase for fabrication of ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2 composites by spark plasma sintering and crystallization of amorphous phase. Mater Sci Eng A. 2010;528:486–493. doi:10.1016/j.msea.2010.09.037.
  • Liu LH, Yang C, Kang LM, et al. Equiaxed Ti-based composites with high strength and large plasticity prepared by sintering and crystallizing amorphous powder. Mater Sci Eng A. 2016;650:171–182. doi:10.1016/j.msea.2015.10.048.
  • Yang C, Liu LH, Cheng QR, et al. Equiaxed grained structure: A structure in titanium alloys with higher compressive mechanical properties. Mater Sci Eng A. 2013;580:397–405. doi:10.1016/j.msea.2013.05.066.
  • Tahara M, Kim HY, Inamura T, et al. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy. J Alloys Compd. 2013;577:S404–S407. doi:10.1016/j.jallcom.2011.12.113.
  • Kim HY, Hashimoto S, Kim JI, et al. Mechanical properties and shape memory behavior of Ti-Nb alloys. Mater Trans. 2004;45:2443–2448. doi:10.2320/matertrans.45.2443.
  • Wasz ML, Brotzen FR, McLellan RB, et al. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int Mater Rev. 1996;41:1–12. doi:10.1179/imr.1996.41.1.1.
  • Xu Z, Yuan B, Gao Y. Benefits in oxygen control and lowering sintering temperature by using hydride powders to sinter Ti–Nb–Zr SMAs. J Alloys Compd. 2020;838:155572), doi:10.1016/j.jallcom.2020.155572.
  • Bönisch M, Panigrahi A, Calin M, et al. Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. J Alloys Compd. 2017;697:300–309. doi:10.1016/j.jallcom.2016.12.108.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep 2015;87:1–57. doi:10.1016/j.mser.2014.10.001.
  • Hao YL, Yang R, Niinomi M, et al. Aging response of the young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications. Metall Mater Trans A. 2003;34:1007–1012. doi:10.1007/s11661-003-0230-x.
  • Zhang J, Li Y, Li W. Metastable phase diagram on heating in quenched Ti-Nb high-temperature shape memory alloys. J Mater Sci. 2021;56:11456–11468. doi:10.1007/s10853-021-05814-4.
  • Pang EL, Hildyard EM, Connor LD, et al. The effect of quench rate on the β-α″ martensitic transformation in Ti–Nb alloys. Mater Sci Eng A. 2021;817:141240), doi:10.1016/j.msea.2021.141240.
  • Li Q, Ma GH, Liu XY, et al. Microstructure and mechanical properties of Ti-Nb-Zr alloys prepared by spark plasma sintering. Key Eng Mater. 2017;727:136–142. 10.4028/www.scientific.net/KEM.727.136.
  • Olevsky EA, Kandukuri S, Froyen L. Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys. 2007;102:114913, doi:10.1063/1.2822189.
  • Antou G, Mathieu G, Trolliard G, et al. Spark plasma sintering of zirconium carbide and oxycarbide: finite element modeling of current density, temperature, and stress distributions. J Mater Res. 2009;24:404–412. doi:10.1557/JMR.2009.0039.
  • Moffat D, Larbalestier D. The compctition between the alpha and omega phases in aged Ti-Nb alloys. Metall Trans A. 1988;19:1687–1694. doi:10.1007/BF02645136.
  • Moffat D, Larbalestier D. The compctition between martensite and omega in quenched Ti-Nb alloys. Metall Trans A. 1988;19:1677–1686. doi:10.1007/BF02645135.
  • Aleixo GT, Afonso CRM, Coelho AA, et al. Effects of omega phase on elastic modulus of Ti-Nb alloys as a function of composition and cooling rate. Solid State Phenom. 2008;138:393–398. doi:10.4028/www.scientific.net/SSP.138.393.
  • Luo X, Liu LH, Yang C, et al. Overcoming the strength–ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy. J Mater Sci Technol. 2021;68:112–123. doi:10.1016/j.jmst.2020.06.053.
  • Zhao GH, Liang XZ, Kim B, et al. Modelling strengthening mechanisms in beta-type Ti alloys. Mater Sci Eng A. 2019;756:156–160. doi:10.1016/j.msea.2019.04.027.
  • Wang Q, Han C, Choma T, et al. Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting. Mater Des. 2017;126:268–277. doi:10.1016/j.matdes.2017.04.026.
  • Nunes ARV, Borborema S, Araújo LS, et al. Production, microstructure and mechanical properties of cold-rolled Ti-Nb-Mo-Zr alloys for orthopedic applications. J Alloys Compd. 2018;743:141–145. doi:10.1016/j.jallcom.2018.01.305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.