329
Views
0
CrossRef citations to date
0
Altmetric
Keynote papers from EuroPM2021

Microstructure control of Additively manufactured IN718 By L-PBF process

, , , , &
Pages 365-372 | Received 22 Nov 2021, Accepted 12 Apr 2022, Published online: 11 May 2022

References

  • Vilaro T, Colin C, Bartout JD, et al. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater Sci Eng A. 2012;534:446–451. doi:10.1016/j.msea.2011.11.092.
  • Chen Y, Lu F, Zhang K, et al. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling. J Alloys Compd. 2016;670:312–321. doi:10.1016/j.jallcom.2016.01.250.
  • Kunze K, Etter T, Grässlin J, et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng A. 2014;620:213–222. doi:10.1016/j.msea.2014.10.003.
  • Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing. Sci Technol Adv Mater. 2001;2:185–191. doi:10.1016/S1468-6996(01)00047-X.
  • Scipioni Bertoli U, MacDonald BE, Schoenung JM. Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel. Mater Sci Eng A. 2019;739:109–117. doi:10.1016/j.msea.2018.10.051.
  • Gaümann M, Bezençon P, Canalis P, et al. Single-crystal laser deposition of superalloys processing microstructure maps.pdf. Acta mater. 2001;49:1051–1062. doi:10.1016/S1359-6454(00)00367-0.
  • Babu SS, Raghavan N, Raplee J, et al. Additive manufacturing of nickel superalloys: opportunities for innovation and challenges related to qualification. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:3764–3780. doi:10.1007/s11661-018-4702-4.
  • Ishimoto T, Wu S, Ito Y, et al. Crystallographic orientation control of 316L austenitic stainless steel via selective laser melting. ISIJ Int. 2020;60:1758–1764. doi:10.2355/isijinternational.ISIJINT-2019-744.
  • Roehling TT, Shi R, Khairallah SA, et al. Controlling grain nucleation and morphology by laser beam shaping in metal additive manufacturing. Mater Des. 2020;195:109071, doi:10.1016/j.matdes.2020.109071.
  • Popovich VA, Borisov EV, Popovich AA, et al. Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Des. 2017;114:441–449. doi:10.1016/j.matdes.2016.10.075.
  • Wang Y, Shi J. Developing very strong texture in a nickel-based superalloy by selective laser melting with an ultra-high power and flat-top laser beam. Mater Charact. 2020;165:110372, doi:10.1016/j.matchar.2020.110372.
  • Montero Sistiaga ML, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting. J Mater Process Technol. 2016;238:437–445. doi:10.1016/j.jmatprotec.2016.08.003.
  • Zhang D, Qiu D, Gibson MA, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature. 2019;576; doi:10.1038/s41586-019-1783-1.
  • Grange D, Bartout JD, Macquaire B, et al. Processing a non-weldable nickel-base superalloy by selective laser melting: role of the shape and size of the melt pools on solidification cracking. Materialia. 2020;12:1–28. doi:10.1016/j.mtla.2020.100686.
  • Maisonneuve J. Fabrication directe de pièces aéronautiques en TA6 V et IN718 : projection et fusion sélective par laser. Mines ParisTech - Université PSL; 2008.
  • Wan HY, Zhou ZJ, Li CP, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J Mater Sci Technol. 2018;34:1799–1804. doi:10.1016/j.jmst.2018.02.002.
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti – 6Al – 4 V. Acta Mater. 2010;58:3303–3312. doi:10.1016/j.actamat.2010.02.004.
  • Geiger F, Kunze K, Etter T. Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies. Mater Sci Eng A. 2016;661:240–246. doi:10.1016/j.msea.2016.03.036.
  • Pham MS, Dovgyy B, Hooper PA, et al. The role of side-branching in microstructure development in laser powder-bed fusion. Nat Commun. 2020;11:1–12. doi:10.1038/s41467-020-14453-3.
  • Toth LS, Biswas S, Gu C, et al. Notes on representing grain size distributions obtained by electron backscatter diffraction. Mater Charact. 2013;84:67–71. doi:10.1016/j.matchar.2013.07.013.
  • Zhu Q, Wang C, Yang K, et al. Plastic deformation behavior of a nickel-based superalloy on the mesoscopic scale. J Mater Sci Technol. 2020;40:146–157. doi:10.1016/j.jmst.2019.09.020.
  • Keshavarzkermani A, Esmaeilizadeh R, Ali U, et al. Controlling mechanical properties of additively manufactured hastelloy X by altering solidification pattern during laser powder-bed fusion. Mater Sci Eng A. 2019; doi:10.1016/j.msea.2019.138081.
  • Cline HE, Anthony TR. Heat treating and melting material with a scanning laser or electron beam. J Appl Phys. 1977;48:3895–3900. doi:10.1063/1.324261.
  • Denlinger ER, Jagdale V, Srinivasan GV, et al. Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements. Addit Manuf. 2016;11:7–15. doi:10.1016/j.addma.2016.03.003.
  • Trapp J, Rubenchik AM, Guss G, et al. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today. 2017;9:341–349. doi:10.1016/j.apmt.2017.08.006.
  • Wang W, Ning J, Liang SY. Prediction of lack-of-fusion porosity in laser powder-bed fusion considering boundary conditions and sensitivity to laser power absorption. Int J Adv Manuf Technol. 2021;112:61–70. doi:10.1007/s00170-020-06224-7.
  • Sainte-Catherine C, Jeandin M, Kechemair D, et al. Study of dynamic absorptivity at 10.6 µm (CO2) and 1.06 µm (Nd-YAG) wavelengths as a function of temperature. Le J Phys IV. 1991;01:C7-151–C7-157. doi:10.1051/jp4:1991741.
  • Grange D, Guillemot G, Bellet M. Effect of processing parameters during the laser beam melting of Inconel 738: comparison between simulated and experimental melt pool shape. J Mater Process Technol. 2021;289:116897, ISSN 0924-0136.
  • Promoppatum P, Yao SC, Pistorius PC, et al. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering. 2017;3:685–694. doi:10.1016/J.ENG.2017.05.023.
  • Mills KC. Recommended values of thermophysical properties for selected commercial alloys. ASM Int. 2002; doi:10.1016/B978-1-84569-990-1.50021-1.
  • Yuan T, Luo Z, Kou S. Grain refining of magnesium welds by arc oscillation. Acta Mater. 2016;116:166–176. doi:10.1016/j.actamat.2016.06.036.
  • Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool. Acta Mater. 2016;106:144–154. doi:10.1016/j.actamat.2016.01.016.
  • Kou S, Limmaneevichitr C, Wei PS. Oscillatory Marangoni flow: a fundamental study by conduction-mode laser spot welding. Weld J. 2011;90:229s–240s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.