174
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and characterisation of nickel-based brazing powder: cobalt and chromium addition effects

, ORCID Icon &
Pages 64-76 | Received 30 Jan 2022, Accepted 28 Apr 2022, Published online: 12 May 2022

References

  • Hawk C.. Wide gap braze repairs of nickel superalloy gas turbine components: Colorado school of mines. Golden (CO): Arthur Lakes Library; 2016.
  • Kishawy HA, Hosseini A. Superalloys. In: Kishawy HA, Hosseini A, editors. Machining difficult-to-cut materials: basic principles and challenges. Cham: Springer International Publishing; 2019. p. 97–137.
  • Hawk C, Liu S, Kottilingam S. Effect of processing parameters on the microstructure and mechanical properties of wide-gap braze repairs on nickel-superalloy René 108. Weld World. 2017;61(2):391–404.
  • Durand-Charre M. The microstructure of superalloys. CRC press; 1998.
  • Ojo OA, Chaturvedi MC. On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy. Mater Sci Eng A. 2005;403(1):77–86.
  • Jang J, Shih H. Study of the nano-structured nickel-based brazing filler synthesized by mechanical alloying. Mater Chem Phys. 2001;70(2):217–222.
  • Rafiei M, Khademzadeh S, Parvin N. Characterization and formation mechanism of nanocrystalline W–Al alloy prepared by mechanical alloying. J Alloys Compd. 2010;489(1):224–227.
  • Xia C, Zhao M, Sun W, et al. Microstructure and properties of 3D printed Inconel 718 joint brazed with BNi-2 amorphous filler metal. Mater Res. 2019;22(1):1–9.
  • Zhou P, Deng L, Xie J, et al. Nanocrystalline structure and particle size effect on microwave permeability of FeNi powders prepared by mechanical alloying. J Magn Magn Mater. 2005;292:325–331.
  • Liu L, Zhang J, Ai C. Nickel-based superalloys. In: Caballero FG, editor. Encyclopedia of materials: metals and alloys. Oxford: Elsevier; 2022. p. 294–304.
  • Hirsch J. 23 - Aluminium sheet fabrication and processing. In: Lumley R, editor. fundamentals of aluminium metallurgy. Woodhead Publishing, Sawston; 2011. p. 719–746.
  • Morinaga M. 6 - Aluminium alloys and magnesium alloys. In: Morinaga M, editor. A quantum approach to alloy design. Elsevier; 2019. p. 95–130.
  • Sankaran KK, Mishra RS. Chapter 5 - titanium alloys. In: Sankaran KK, Mishra RS, editors. Metallurgy and design of alloys with hierarchical microstructures. Elsevier; 2017. p. 177–288.
  • An K, Fu S. High entropy alloys: advanced synchrotron X-Ray and neutron scattering studies. In: Caballero FG, editor. Encyclopedia of materials: metals and alloys. Oxford: Elsevier; 2022. p. 381–392.
  • Ghasemi A, Pouranvari M. Intermetallic phase formation during brazing of a nickel alloy using a Ni–Cr–Si–Fe–B quinary filler alloy. Sci Technol Weld Joining. 2019;24(4):342–351.
  • Jiang W, Gong J, Tu S. Effect of brazing temperature on tensile strength and microstructure for a stainless steel plate-fin structure. Mater Des. 2011;32(2):736–742.
  • Pouranvari M, Ekrami A, Kokabi A. Role of base-metal composition in isothermal solidification during diffusion brazing of nickel-based superalloys. Sci Technol Weld Joining. 2018;23(1):13–18.
  • Zlá S, Smetana B, Žaludová M, et al. Determination of thermophysical properties of high temperature alloy IN713LC by thermal analysis. J Therm Anal Calorim. 2012;110(1):211–219.
  • Chapman L. Application of high temperature DSC technique to nickel based superalloys. J Mater Sci. 2004;39(24):7229–7236.
  • Guzman-Flores I, Vargas-Arista B, García-Vázquez F, et al. Wide gap joints in inconel 738 super alloy by vacuum brazing: microstructure and microhardness. DYNA. 2019;94(3):318–323.
  • stella-welding.com. Stella Welding Alloys Albizatte (Italy)2020. Available from: https://www.stella-welding.com/en/nickel-based-alloys/.
  • Oerlikon.com. Oerlikon Group Freienbach (Switzerland)2020. Available from: https://www.oerlikon.com/
  • Princeizant.com. Prince & Izant Company Cleveland (US)2020. Available from: https://princeizant.com/uploads/Technical_Data_Sheets_2016/Nickel/AMS_4777_BNi-2_TDS
  • Elrefaey A, Tillmann W. Effect of brazing parameters on microstructure and mechanical properties of titanium joints. J Mater Process Technol. 2009;209(10):4842–4849.
  • Pike L.. Development of a fabricable gamma-prime (γ′) strengthened superalloy , May, Superalloys; 2008.
  • Chen Y, Cui H. Effect of temperature and hold time of induction brazing on microstructure and shear strength of martensitic stainless steel joints. Materials (Basel). 2018;11:(1586), doi:10.3390/ma11091586.
  • Miyazawa Y, Ariga T.. A study of the brazeability of nickel-based brazing filler metal foil for joining nickel base metal to mild steel base metal. Weld Res Suppl. 294–300.
  • Takayama S, Arikura Y, Shohji I, et al. Joint strength and microstructure of SUS304 brazed with nickel-base filler metal for heat exchangers. J Jpn Inst Met. 2004;68:130–133.
  • Ou CL, Liaw DW, Du YC, et al. Brazing of 422 stainless steel using the AWS classification BNi-2 braze alloy. J Mater Sci. 2006;41:6353–6361. doi:10.1007/s10853-006-0709-0.
  • Kon Lee I, Sheu H-H, Hsu H-Y. The effects of graphene content on the mechanical properties and thermal conductivity of Inconel 718 superalloy brazed using BNi-2/graphene composite filler metal. Results Phys. 2020;16:102828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.