1,077
Views
1
CrossRef citations to date
0
Altmetric
Articles

Impact of powder reusability on batch repeatability of Ti6Al4V ELI for PBF-LB industrial production

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 129-138 | Received 25 May 2022, Accepted 01 Oct 2022, Published online: 18 Oct 2022

References

  • Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies. New York (NY): Springer; 2010.
  • Ardila LC, Garciandia F, González-Díaz JB, et al. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting. Phys Procedia. 2014;56:99–107. doi:10.1016/j.phpro.2014.08.152.
  • Gasper AND, Hickman D, Ashcroft I, et al. Oxide and spatter powder formation during laser powder bed fusion of Hastelloy X. Powder Technol. 2019;354:333–337. doi:10.1016/J.POWTEC.2019.06.004.
  • Gasper AND, et al. Spatter and oxide formation in laser powder bed fusion of Inconel 718. Addit Manuf. 2018;24:446–456. doi:10.1016/J.ADDMA.2018.09.032.
  • Cordova L, Campos M, Tinga T. Revealing the effects of powder reuse for selective laser melting by powder characterization. JOM. 2019;71(3):1062–1072. doi:10.1007/s11837-018-3305-2.
  • Mellin P, Shvab R, Strondl A, et al. COPGLOW and XPS investigation of recycled metal powder for selective laser melting. Powder Metall. 2017;60(3):223–231. doi:10.1080/00325899.2017.1296607.
  • Sutton AT, Kriewall CS, Leu MC, et al. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys Prototyp. 2017;12(1):3–29. doi:10.1080/17452759.2016.1250605.
  • Cordova L, Bor T, de Smit M, et al. Effects of powder reuse on the microstructure and mechanical behaviour of Al–Mg–Sc–Zr alloy processed by laser powder bed fusion (LPBF). Addit Manuf. 2020;36, doi:10.1016/j.addma.2020.101625.
  • Seyda V, Kaufmann N, Emmelmann C. Investigation of aging processes of Ti-6Al-4 V powder material in laser melting. Phys Procedia. 2012;39:425–431. doi:10.1016/j.phpro.2012.10.057.
  • Tang HP, Qian M, Liu N, et al. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. JOM. 2015;67(3):555–563. doi:10.1007/s11837-015-1300-4.
  • O’Leary R, Setchi R, Prickett P, et al. An investigation into the recycling of Ti-6Al-4V powder used within SLM to improve sustainability. SDM2015 2nd Int Conf Sustain Des Manuf; 2015.
  • Quintana OA, Alvarez J, Mcmillan R, et al. Effects of reusing Ti-6Al-4V powder in a selective laser melting additive system operated in an industrial setting. JOM. 2018;70(9):1863–1869. doi:10.1007/s11837-018-3011-0.
  • Moghimian P, et al. Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys. Addit Manuf. 2021;43:102017. doi:10.1016/j.addma.2021.102017.
  • Denti L, Sola A, Defanti S, et al. Effect of powder recycling in laser-based powder bed fusion of Ti-6Al-4V. Manuf Technol. 2019;19(2):190–196. doi:10.21062/ujep/268.2019/a/1213-2489/mt/19/2/190.
  • Harkin R, Wu H, Nikam S, et al. Powder reuse in laser-based powder Bed fusion of Ti6Al4V-changes in mechanical properties during a powder top-up regime. Materials (Basel). 2022;15(6):2238,: 10.3390/ma15062238.
  • Alamos FJ, Schiltz J, Kozlovsky K, et al. Effect of powder reuse on mechanical properties of Ti-6Al-4V produced through selective laser melting. Int J Refract Met Hard Mater. 2020;91:105273, doi:10.1016/J.IJRMHM.2020.105273.
  • Pauzon C, Dietrich K, Forêt P, et al. Control of residual oxygen of the process atmosphere during laser-powder bed fusion processing of Ti-6Al-4V. Addit Manuf. 2021;38:101765, doi:10.1016/J.ADDMA.2020.101765.
  • Pauzon C, Raza A, Hryha E, et al. Oxygen balance during laser powder bed fusion of Alloy 718. Mater Des. 2021;201:109511, doi:10.1016/J.MATDES.2021.109511.
  • Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;72:163–168.
  • Cordova L, Bor T, de Smit M, et al. Measuring the spreadability of pre-treated and moisturized powders for laser powder bed fusion. Addit Manuf. 2020;32:101082, doi:10.1016/J.ADDMA.2020.101082.
  • Cordova L, Campos M, Tinga T. Assessment of moisture content and its influence on laser beam melting feedstock, 2017, [Online]. Available from: https://www.europm2017.com/.
  • Shi X, Ma S, Liu C, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: microstructure and mechanical properties. Mater Sci Eng A. 2017;684:196–204. doi:10.1016/J.MSEA.2016.12.065.
  • Sun Y, Aindow M, Hebert RJ. Comparison of virgin Ti-6Al-4V powders for additive manufacturing. Addit Manuf. 2018;21:544–555. doi:10.1016/j.addma.2018.02.011.
  • Agius D, Kourousis KI, Wallbrink C, et al. Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation. Mater Sci Eng A. 2017;701:85–100. doi:10.1016/J.MSEA.2017.06.069.
  • Harkin R, Wu H, Nikam S, et al. Reuse of grade 23 Ti6Al4V powder during the laser-based powder bed fusion process. Metals (Basel). 2020;10(12):1–14. doi:10.3390/met10121700.