1,477
Views
2
CrossRef citations to date
0
Altmetric
Articles

Development of powder bed fusion – laser beam process for AISI 4140, 4340 and 8620 low-alloy steel

ORCID Icon, &
Pages 94-106 | Received 11 Jul 2022, Accepted 01 Oct 2022, Published online: 17 Oct 2022

References

  • DebRoy T, Wei H, Zuback J, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001.
  • Priarone P, Lunetto V, Atzeni E, et al. Laser powder bed fusion (L-PBF) additive manufacturing: On the correlation between design choices and process sustainability. Procedia CIRP. 2018;78:85–90. doi:10.1016/j.procir.2018.09.058.
  • Dossett J, Totten G. ASM handbook, volume 04D - heat treating of irons and steels. Materials Park (OH): ASM International; 2014.
  • Committee AIH. ASM handbook, volume 01 - properties and selection: irons, steels, and high-performance alloys. Materials Park (OH): ASM International; 1990.
  • Seede R, Zhang B, Whitt A, et al. Effect of heat treatments on the microstructure and mechanical properties of an ultra-high strength martensitic steel fabricated via laser powder bed fusion additive manufacturing. Add Manuf. 2021;47; doi:10.1016/j.addma.2021.102255.
  • Jelis E, Clemente M, Hespos M, et al. Round robin study evaluating consistency of 4340 steel. J Mater Eng Perform. 2021;30:6832–6843. doi:10.1007/s11665-021-06020-8.
  • Jelis E, Hespos M, Ravindra N. Process evaluation of AISI 4340 steel manufactured by laser powder Bed fusion. J Mater Eng Perform. 2018;27:63–71. doi:10.1007/s11665-017-2989-8.
  • Seede R, Shoukr D, Zhang B, et al. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties. Acta Mater. 2020;186:199–214. doi:10.1016/j.actamat.2019.12.037.
  • Ryder M, Mongomery C, Brand M, et al. Melt pool and heat treatment optimization for the fabrication of high-strength and high-toughness additively manufactured 4340 steel. J Mater Eng Perform. 2021;30:5426–5440. doi:10.1007/s11665-021-05836-8.
  • Li X, Hao Tan Y, Willy H, et al. Heterogeneously tempered martensitic high strength steel by selective laser melting and its micro-lattice: processing, microstructure, superior performance and mechanisms. Mater Des. 2019;178:1–13. doi:10.1016/j.matdes.2019.107881.
  • Dilip J, Janaki Ram G, Starr T, et al. Selective laser melting of HY100 steel: process parameters, microstructure and mechanical properties. Add Manuf. 2017;13:49–60. doi:10.1016/j.addma.2016.11.003.
  • Wang W, Kelly S. A metallurgical evaluation of the powder-Bed laser additive manufactured 4140 steel material. JOM. 2016;68(3):869–875. doi:10.1007/s11837-015-1804-y.
  • Narvan M, Al-Rubaie KS, Elbestawi M. Process-structure-property relationships of AISI H13 tool steel processed with selective laser melting. Materials (Basel). 2019;12:1–20. doi:10.3390/ma12142284.
  • Mertens R, Dadbakhsh S, Van Humbeeck J, et al. Application of base plate preheating during selective laser melting. Procedia CIRP. 2018;74:5–11. doi:10.1016/j.procir.2018.08.002.
  • Kempen K, Vrancken B, Buls S, et al. Selective laser melting of crack-free high densit M2 high speed steel parts by baseplate preheating. J Manuf Sci Eng. 2014;136:1–6. doi:10.1115/1.4028513.
  • Schneider C, Rasband W, Eliceiri K. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012: 671–675. doi:10.1038/nmeth.2089.
  • Hearn W, Steinlechner R, Hryha E. Laser-based powder bed fusion of non-weldable low-alloy steels. Powder Metall. 2021. doi:10.1080/00325899.2021.1959695.
  • Niessen F, Nyssönen T, Gazder A, et al. Parent grain reconstruction from partially or fully transformed microstructures in MTEX. ArXiv Prepr. ArXiv2104.14603. 2021.doi:10.48550/arXiv.2104.14603.
  • “ASTM E8M/E8M-21: Standard Test Methods for Tension Testing of Metallic Materials,” ASTM International, 2021.
  • “ASTM E2298-18: Standard Test Method for Instrumented Impact Testing of Metallic Materials,” ASTM International, 2018.
  • Hearn W, Hryha E. Effect of carbon content on the processability of Fe-C alloys produced by laser based powder Bed fusion. Front Mater. 2022;8; doi:10.3389/fmats.2021.800021.
  • Thampy V, Fong A, Calta N, et al. Subsurface cooling rates and microstructural response during laser based metal additive manufacturing. Sci Rep. 2020;10; doi:10.1038/s41598-020-58598-z.
  • Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts. Phys Procedia. 2016;83:882–890. doi:10.1016/j.phpro.2016.08.092.
  • Narvan M, Ghasemi A, Fereiduni E, et al. Part deflection and residual stresses in laser powder bed fusion of H13 tool steel. Mater Des. 2021;204:109659. doi:10.1016/j.matdes.2021.109659.
  • Meysami A, Ghasemzadeh R, Seyedein S, et al. An investigation on the microstructure and mechanical properties of direct-quenched and tempered AISI 4140 steel. Mater Des. 2010;31:1570–1575. doi:10.1016/j.matdes.2009.09.040.
  • Saeglitz M, Krauss G. Deformation, fracture, and mechanical properties of low-temperature-tempered martensite in SAE 43xx steels. Metall Mater Trans A. 1997;28:377–387. doi:10.1007/s11661-997-0139-x.
  • Materkowski J, Krauss G. Tempered martensite embrittlement in SAE 4340 steel. Metall Trans A. 1979;10:1643–1651. doi:10.1007/BF02811697.
  • Boyle E, Northwood D, Bowers R, et al. The effects of initial microstructure and heat treatment on the core mechanical properties of carburized automotive steels. Mater Forum. 2008;32:44–54.
  • Hearn W, Lindgren K, Persson J, et al. In situ tempering of martensite during laser powder bed fusion of Fe-0.45C steel. Materialia. 2022;23:101459. doi:10.1016/j.mtla.2022.101459.
  • Haghdadi N, Laleh M, Moyle M, et al. Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci. 2021;56:64–107. doi:10.1007/s10853-020-05109-0.
  • Kok Y, Tan X, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des. 2018;139:565–586. doi:10.1016/j.matdes.2017.11.021.
  • Tan C, Zhou K, Kuang M, et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci Technol Adv Mater. 2018;19:746–758. doi:10.1080/14686996.2018.1527645.
  • Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: a review of their microstructure and properties. Mater Sci Eng A. 2020;772; doi:10.1016/j.msea.2019.138633.
  • Åkerfeldt P. Additive manufacturing of Ti-6Al-4V: relationship between microstructure, defects and mechanical properties. Luleå: Luleå University of Technology; 2016.
  • Larrosa N, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy. Theor Appl Fract Mech. 2018;98:123–133. doi:10.1016/j.tafmec.2018.09.011.
  • “ASTM A958/A958M - 17: Standard specification for steel castings, carbon and alloy, with tensile requirements, chemical requirements similar to Standard Wrought Grades,” ASTM International, 2017.
  • “ASTM A673/A673M - 17: Standard specification for sampling procedure for impact testing of structural steel,” ASTM International, 2017.