718
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of methods for characterising the steel cleanness in powder metallurgical high-speed steels

ORCID Icon, , , , , & show all
Pages 316-332 | Received 02 Nov 2022, Accepted 13 Jan 2023, Published online: 29 Jan 2023

References

  • Zhang L, Thomas BG. State of the art in evaluation and control of steel cleanliness. ISIJ Int. 2003;43(3):271–291. doi:10.2355/isijinternational.43.271.
  • Feng H, Li H-B, Liu Z-Z, et al. Cleanliness control of high nitrogen stainless bearing steel by vacuum carbon deoxidation in a PVIM furnace. Metall and Materi Trans B. 2021;52(6):3777–3787. doi:10.1007/s11663-021-02291-7.
  • Yang S, Yang S, Qu J, et al. Inclusions in wrought superalloys: a review. J Iron Steel Res Int. 2021;28(8):921–937. doi:10.1007/s42243-021-00617-y.
  • Fölzer A, Tornberg C. Advances in processing technology for powder-metallurgical tool steels and high speed steels giving excellent cleanliness and homogeneity. MSF. 2003;426–432:4167–4172. doi:10.4028/www.scientific.net/MSF.426-432.4167.
  • Tornberg C, Fölzer A. New optimised manufacturing route for PM tool steels and High Speed Steels. 6th International Tooling Conference: The Use of Tool Steels; 2002 Sept; Karlstadt, Sweden.
  • Tornberg C, Fölzer A. Less carbide means fewer cracks in tools made from gas-atomised steel. Met Powder Rep. 2005;60(6):36–40. doi:10.1016/S0026-0657(05)70434-3.
  • Zhang Y, Feng E, Mo W, et al. On the microstructures and fatigue behaviors of 316L stainless steel metal injection molded with gas- and water-atomized powders. Metals. 2018;8(11):893. doi:10.3390/met8110893.
  • Iqbal A, King J. The role of primary carbides in fatigue crack propagation in aeroengine bearing steels. Int J Fatigue. 1990;12(4):234–244. doi:10.1016/0142-1123(90)90450-S.
  • Sohar CR, Betzwar-Kotas A, Gierl C, et al. PM tool steels push the edge in fatigue tests. Met Powder Rep. 2009;64(2):12–17. doi:10.1016/S0026-0657(09)70013-X.
  • Bytyqi A, Pukšič N, Jenko M, et al. Characterization of the inclusions in spring steel using light microscopy and scanning electron microscopy. Mater Technol. 2011;45(1):55–59.
  • Bandi B, Santillana B, Tiekink W, et al. 2D automated SEM and 3D X-ray computed tomography study on inclusion analysis of steels. Ironmak Steelmak. 2020;47(1):47–50. doi:10.1080/03019233.2019.1652437.
  • Capurro C, Boeri R, Cicutti C. Characterization of nonmetallic inclusions of Al-killed Ca-treated steels by automated SEM/EDS and its application to industrial case studies. Steel Research Int. 2022: 2200152. doi:10.1002/srin.202200152.
  • Nuspl M, Wegscheider W, Angeli J, et al. Qualitative and quantitative determination of micro-inclusions by automated SEM/EDX analysis. Anal Bioanal Chem. 2004;379(4):640–645. doi:10.1007/s00216-004-2528-y.
  • Ramesh Babu S, Michelic SK. Analysis of non-metallic inclusions by means of chemical and electrolytic extraction – a review. Materials (Basel, Switzerland). 2022;15:9. doi:10.3390/ma15093367.
  • Doostmohammadi H, Karasev A, Jönsson PG. A comparison of a two-dimensional and a three-dimensional method for inclusion determinations in tool steel. Steel Research Int. 2010;81(5):398–406. doi:10.1002/srin.200900149.
  • Wang Y, Karasev A, Jönsson PG. Comparison of nonmetallic inclusion characteristics in metal samples using 2D and 3D methods. Steel Res Int. 2020;91(7):1900669. doi:10.1002/srin.201900669.
  • Zerbst U, Madia M, Klinger C, et al. Defects as a root cause of fatigue failure of metallic components. II: non-metallic inclusions. Eng Fail Anal. 2019;98:228–239. doi:10.1016/j.engfailanal.2019.01.054.
  • Li W, Wang Y, Wang W, et al. Dependence of the clogging possibility of the submerged entry nozzle during steel continuous casting process on the liquid fraction of non-metallic inclusions in the molten Al-killed Ca-treated steel. Metals (Basel). 2020;10(9):1205. doi:10.3390/met10091205.
  • Park JH, Kang Y. Inclusions in stainless steels − a review. Steel Res Int. 2017;88(12):1700130. doi:10.1002/srin.201700130.
  • Zhang JW, Lu LT, Wu PB, et al. Inclusion size evaluation and fatigue strength analysis of 35CrMo alloy railway axle steel. Mater Sci Eng A. 2013;562:211–217. doi:10.1016/j.msea.2012.11.035.
  • Schickbichler M. Extraktion Sulfidischer Einschlüsse aus der Stahlmatrix [bachelor’s thesis]. Leoben, Austria; 2020.
  • Beretta S. More than 25 years of extreme value statistics for defects: fundamentals, historical developments, recent applications. Int J Fatigue. 2021;151:106407. doi:10.1016/j.ijfatigue.2021.106407.
  • Anderson C, Shi G, Atkinson H, et al. The precision of methods using the statistics of extremes for the estimation of the maximum size of inclusions in clean steels. Acta Mater. 2000;48(17):4235–4246. doi:10.1016/S1359-6454(00)00281-0.
  • Anderson CW. The largest inclusions in a Piece of Steel. Extremes. 2002;5(3):237–252. doi:10.1023/A:1024025027522.
  • Swinden JWDJ. Kinetics of the nucleation and growth of proeutectoid ferrite in some Fe-C-Cr alloys. J Iron Steel Inst. 1971;209(11):883–899.
  • Shi G, Atkinson HV, Sellars CM, et al. Application of the generalized Pareto distribution to the estimation of the size of the maximum inclusion in clean steels. Acta Mater. 1999;47(5):1455–1468. doi:10.1016/S1359-6454(99)00034-8.
  • Machado PVS, Araújo LC, Soares MV, et al. The use of a modified critical plane model to assess multiaxial fatigue of steels with nonmetallic inclusions. MATEC Web Conf. 2019;300:16005. doi:10.1051/matecconf/201930016005.
  • Ahmad A, Purbolaksono J, Yahya Z. Estimating inclusion size in WE43-T6 magnesium alloys based on Gumbel extreme values. Mater Sci Eng A. 2009;513–514:319–324. doi:10.1016/j.msea.2009.02.030.
  • Furuya Y, Matsuoka S, Abe T. A novel inclusion inspection method employing 20 kHz fatigue testing. Metall Mat Trans A. 2003;34(11):2517–2526. doi:10.1007/s11661-003-0011-6.
  • Atkinson HV, Shi G. Characterization of inclusions in clean steels: a review including the statistics of extremes methods. Prog Mater Sci. 2003;48(5):457–520. doi:10.1016/S0079-6425(02)00014-2.
  • Bag A, Delbergue D, Bocher P, et al. Statistical analysis of high cycle fatigue life and inclusion size distribution in shot peened 300M steel. Int J Fatigue. 2019;118:126–138. doi:10.1016/j.ijfatigue.2018.08.009.