950
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of oxygen in the production chain of Cu–Ti-based metallic glasses via laser powder bed fusion

ORCID Icon, , , , , , & show all
Pages 343-354 | Received 01 Nov 2022, Accepted 07 Feb 2023, Published online: 16 Mar 2023

References

  • Wegner J, Frey M, Kleszczynski S, et al. Influence of process gas during powder bed fusion with laser beam of Zr-based bulk metallic glasses. Procedia CIRP. 2020;94:205–210.
  • Wegner J, Frey M, Piechotta M, et al. Influence of powder characteristics on the structural and the mechanical properties of additively manufactured Zr-based bulk metallic glass. Mater Des. 2021;209:1–12.
  • Luo N, Huber F, Ciftci N, et al. Laser powder bed fusion of FeCoBSiNb–Cu bulk metallic glass composites: processing, microstructure and mechanical properties. Mater Sci Eng A. 2022;849. Article No. 143405. DOI:10.1016/j.msea.2022.143405
  • Sohrabi N, Jhabvala J, Logé RE. Additive manufacturing of bulk metallic glasses—process, challenges and properties. A Rev Metal. 2021;11(8):1279. DOI:10.3390/met11081279.
  • Liu CT, Chisholm MF, Miller MK. Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics. 2002;10(11–12):1105–1112.
  • Deng L, Kosiba K, Limbach R, et al. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting. J Mater Sci Technol. 2021;60:139–146.
  • Pacheco V, Karlsson D, Marattukalam JJ, et al. Thermal stability and crystallization of a Zr-based metallic glass produced by suction casting and selective laser melting. J Alloys Compd. 2020;825. Article No. 153995. DOI:10.1016/j.jallcom.2020.153995.
  • Frey M, Wegner J, Neuber N, et al. Thermoplastic forming of additively manufactured Zr-based bulk metallic glass: a processing route for surface finishing of complex structures. Mater Des. 2021;198:1–8.
  • Soares Barreto E, Uhlenwinkel V, Frey M, et al. Influence of processing route on the surface reactivity of Cu47Ti33Zr11Ni6Sn2Si1 metallic glass. Metals (Basel). 2021;11(8):1173. DOI:10.3390/met11081173
  • Madge SV, Greer AL. Laser additive manufacturing of metallic glasses: issues in vitrification and mechanical properties. Oxford Open Mater Sci. 2020;1(1):1–13.
  • Soares Barreto E, Frey M, Wegner J, et al. Properties of gas-atomized Cu-Ti-based metallic glass powders for additive manufacturing. Mater Des. 2022;215:1–11.
  • Sordelet DJ, Rozhkova E, Besser MF, et al. Consolidation of gas atomized Cu47Ti34Zr11Ni8 amorphous powders. J Non Cryst Solids. 2003;317(1-2):137–143.
  • Pauzon C, Dietrich K, Forêt P, et al. Control of residual oxygen of the process atmosphere during laser-powder bed fusion processing of Ti–6Al–4V. Additive Manufact. 2021;38:1–10.
  • Jonas I, Hembree W, Yang F, et al. Industrial grade versus scientific pure: influence on melt properties. Appl Phys Lett. 2018;112(17):1–4.
  • Gebert A, Eckert J, Schultz L. Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass. Acta Mater. 1998;46(15):5475–5482.
  • Kündig AA, Lepori D, Perry AJ, et al. Influence of low oxygen contents and alloy refinement on the glass forming ability of Zr52.5Cu17.9Ni14.6Al10Ti5. Mater Trans. 2002;43(12):3206–3210.
  • Neto C, Pereira ND, Antonio FS, et al. Phase formation maps in Zr48Cu46.5Al4Nb1.5 bulk metallic glass composites as a function of cooling rate and oxygen concentration. Mater Charact. 2019;158. Article No. 109932. DOI:10.1016/j.matchar.2019.109932
  • Neto C, Soares ND, Pereira C, et al. Glass forming ability and continuous-cooling-transformation (CCT) diagrams of vitreloy 105 as function of cooling rate and oxygen concentration. J Non Cryst Solids. 2020;528:1–10.
  • Murty BS, Ping DH, Hono K, et al. Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Mater. 2000;48(15):3985–3996.
  • Park ES, Chang HJ, Kim DH. Improvement of glass-forming ability and phase separation in Cu–Ti-rich Cu–Ti–Zr–Ni–Si bulk metallic glasses. J Alloys Compd. 2010;504:S27–S30.
  • Bordeenithikasem P, Stolpe M, Elsen A, et al. Glass forming ability, flexural strength, and wear properties of additively manufactured Zr-based bulk metallic glasses produced through laser powder bed fusion. Additive Manufact. 2018;21:312–317.
  • Marattukalama JJ, Pacheco V, Karlsson D, et al. Development of process parameters for selective laser melting of a Zr-based bulk metallic glass. Additive Manufact. 2020;33:1–8.
  • Sohrabi N, Schawe JEK, Jhabvala J, et al. Critical crystallization properties of an industrial-grade Zr-based metallic glass used in additive manufacturing. Scr Mater. 2021;199:1–5.
  • Garrett GR, Demetriou MD, Chen J, et al. Effect of microalloying on the toughness of metallic glasses. Appl Phys Lett. 2012;101(24):1–3.
  • Choi-Yim H, Busch R, Johnson WL. The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J Appl Phys. 1998;83(12):7993–7997.
  • Ciftci N, Ellendt N, Soares Barreto E, et al. Increasing the amorphous yield of {(Fe0.6Co0.4)0.75B0.2Si0.05}96Nb4 powders by hot gas atomization. Adv Powder Technol. 2018;29(2):380–385.
  • Shao L, Ketkaew J, Gong P, et al. Effect of chemical composition on the fracture toughness of bulk metallic glasses. Materialia. 2020;12. Article No. 100828. DOI:10.1016/j.mtla.2020.100828
  • Hofmann DC, Bordeenithikasem P, Pate A, et al. Developing processing parameters and characterizing microstructure and properties of an additively manufactured FeCrMoBC metallic glass forming alloy. Adv Eng Mater. 2018;20(10):1–11.
  • Pauly S, Schricker C, Scudino S, et al. Processing a glass-forming Zr-based alloy by selective laser melting. Mater Des. 2017;135:133–141.
  • Chouhan A, Hesselmann M, Toenjes A, et al. Numerical modelling of in-situ alloying of Al and Cu using the laser powder bed fusion process: A study on the effect of energy density and remelting on deposited track homogeneity. Additive Manufact. 2022;59:1–16.
  • Williams E, Lavery N. Laser processing of bulk metallic glass: A review. J Mater Process Technol. 2017;247:73–91.
  • Miller CC. The Stokes-Einstein law for diffusion in solution. Proc The Royal Soc A: Mathemat, Phys Eng Sci. 1924;106(740):724–749.
  • Kübler A, Eckert J, Gebert A, et al. Influence of oxygen on the viscosity of Zr–Al–Cu–Ni metallic glasses in the undercooled liquid region. J Appl Phys. 1998;83(6):3438–3440.
  • Mizuno A, Harada T, Watanabe M. Effect of minor addition of oxygen on bulk metallic glass formation of binary Cu–Zr alloys via containerless processing. Physica Status Solidi (b). 2020;257(11). DOI:10.1002/pssb.202000140
  • Lin XH, Johnson WL, Rhim WK. Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr–Ti–Cu–Ni–Al alloy. Mater Trans JIM. 1997;38(5):473–477.
  • Bochtler B. Thermophysical and structural investigations of a CuTi- and a Zr-based bulk metallic glass, the influence of minor additions, and the relation to thermoplastic forming [Dissertation]. University of Saarland; 2019.
  • Ciftci N, Ellendt N, Coulthard G, et al. Novel cooling rate correlations in molten metal Gas atomization. Metallurg Mater Trans B. 2019;50:666–677.
  • Glade SC, Löffler JF, Bossuyt S, et al. Crystallization of amorphous Cu47Ti34Zr11Ni8. J Appl Phys. 2001;89(3):1573–1589.
  • Suryanarayana C, Inoue A. Metallic Glasses. Ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH; 2012.
  • Yang C, Zhang C, Xing W, et al. 3D printing of Zr-based bulk metallic glasses with complex geometries and enhanced catalytic properties. Intermetallics. 2018;94:22–28.
  • Chen SH, Cheng HY, Chan KC, et al. Metallic glass structures for mechanical-energy-dissipation purpose. A Rev Metas. 2018;8(9):1–15.
  • Homer ER, Harris MB, Zirbel SA, et al. New methods for developing and manufacturing compliant mechanisms utilizing bulk metallic glass. Adv Eng Mater. 2014;16(7):850–856.
  • Wegner J, Frey M, Busch R, et al. Additive manufacturing of a compliant mechanism using Zr-based bulk metallic glass. Addit Manufact Lett. 2021;1:1–6.
  • Sarac B, Ketkaew J, Popnoe DO, et al. Honeycomb structures of bulk metallic glasses. Adv Funct Mater. 2012;22(15):3161–3169.
  • Wegner J, Frey M, Stiglmair P, et al. Mechanical properties of honeycomb structured Zr-based bulk metallic glass specimens fabricated by laser powder Bed fusion. S Afr J Ind Eng. 2019;30(3):32–40.