1,159
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of layer thickness on spatter properties during laser powder bed fusion of Ti–6Al–4V

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 333-342 | Received 13 Jan 2023, Accepted 13 Mar 2023, Published online: 27 Mar 2023

References

  • Pauzon C, Raza A, Hryha E, et al. Oxygen balance during laser powder bed fusion of Alloy 718. Mater Des. 2021;201; doi:10.1016/j.matdes.2021.109511.
  • Raza A, Pauzon C, Hryha E, et al. Spatter oxidation during laser powder bed fusion of Alloy 718: dependence on oxygen content in the process atmosphere. Addit Manuf. 2021;48; doi:10.1016/j.addma.2021.102369.
  • Raza A, Fiegl T, Hanif I, et al. Degradation of AlSi10Mg powder during laser based powder bed fusion processing. Mater Des. 2021;198:109358, doi:10.1016/j.matdes.2020.109358.
  • Pauzon C, Dietrich K, Forêt P, et al. Control of residual oxygen of the process atmosphere during laser-powder bed fusion processing of Ti-6Al-4V. Addit Manuf. 2021;38; doi:10.1016/j.addma.2020.101765.
  • Dietrich K, Diller J, Dubiez-le Goff S, et al. The influence of oxygen on the chemical composition and mechanical properties of Ti-6Al-4 V during laser powder bed fusion (L-PBF). Addit Manuf. 2020;32:100980. doi:10.1016/j.addma.2019.100980.
  • Hryha E, Shvab R, Bram M, et al. Surface chemical state of Ti powders and its alloys : effect of storage conditions and alloy composition. Appl Surf Sci. 2016;388:294–303. doi:10.1016/j.apsusc.2016.01.046.
  • Cao Y, Delin M, Kullenberg F, et al. Surface modification of Ti-6Al-4 V powder during recycling in EBM process. Surf Interface Anal. 2020;52:1066–1070. doi:10.1002/sia.6847.
  • Qiu C, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 2015;96:72–79. doi:10.1016/j.actamat.2015.06.004.
  • Leicht A, Fischer M, Klement U, et al. Increasing the productivity of laser powder bed fusion for stainless steel 316L through increased layer thickness. J Mater Eng Perform. 2021;30:575–584. doi:10.1007/s11665-020-05334-3.
  • de Formanoir C, Paggi U, Colebrants T, et al. Increasing the productivity of laser powder bed fusion: influence of the hull-bulk strategy on part quality, microstructure and mechanical performance of Ti-6Al-4 V. Addit. Manuf. 2020;33:101129, doi:10.1016/j.addma.2020.101129.
  • Shi X, Ma S, Liu C, et al. Performance of high layer thickness in selective laser melting of Ti6Al4V. Materials (Basel). 2016;9:1–15. doi:10.3390/ma9120975.
  • Brika SE, Letenneur M, Dion CA, et al. Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Addit Manuf 2020;31:100929, doi:10.1016/j.addma.2019.100929.
  • DIN EN ISO 6892-1:2016. - Metallic materials – Tensile testing – Part 1: Method of test at room temperature, 2017.
  • Phother-Simon J, Hanif I, Liske J, et al. The influence of a KCl-rich environment on the corrosion attack of 304 L: 3D FIB/SEM and TEM investigations. Corros Sci. 2021;183:109315, doi:10.1016/j.corsci.2021.109315.
  • Yin J, Yang LL, Yang X, et al. High-power laser-matter interaction during laser powder bed fusion. Addit Manuf. 2019;29:100778, doi:10.1016/j.addma.2019.100778.
  • Schwerz C, Raza A, Lei X, et al. In-situ detection of redeposited spatter and its influence on the formation of internal flaws in laser powder bed fusion. Addit Manuf. 2021;47:102370, doi:10.1016/j.addma.2021.102370.
  • Pauzon C, Mishurova T, Fischer M, et al. Impact of contour scanning and helium-rich process gas on performances of Alloy 718 lattices produced by laser powder bed fusion. Mater Des. 2022;215:110501, doi:10.1016/j.matdes.2022.110501.
  • Chen Z, Raza A, Hryha E. Influence of part geometry on spatter formation in laser powder bed fusion of Inconel 718 alloy revealed by optical tomography. J Manuf Process. 2022;81:680–695. doi:10.1016/j.jmapro.2022.07.031.
  • Pauzon C, Dietrich K, Forêt P, et al. Mitigating oxygen pick-up during laser powder bed fusion of Ti-6Al-4 V by limiting heat accumulation. Mater Lett. 2021;288:129365, doi:10.1016/j.matlet.2021.129365.
  • Nyborg L, Nylund A, Olefjord I. Thickness determination of oxide layers on spherically-shaped metal powders by ESCA. Surf Interface Anal. 1988;12:110–114. doi:10.1002/sia.740120209.
  • Oikonomou C, Nikas D, Hryha E, et al. Evaluation of the thickness and roughness of homogeneous surface layers on spherical and irregular powder particles. Surf Interface Anal. 2014;46:1028–1032. doi:10.1002/sia.5439.
  • Baer DR, Engelhard MH, Lea AS, et al. Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2, J Vac Sci technol A. 2010;28:1060–1072. doi:10.1116/1.3456123.
  • EOS GmbH, Material data sheet EOS Titanium Ti64 Material data sheet Technical data, 49 (2014) 1–5.