354
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Cracking susceptibility of maraging parts manufactured by laser powder bed fusion additive manufacturing: study on the powder characteristics and baseplate preheating influence

, , , &
Pages 416-426 | Received 13 Jan 2023, Accepted 08 May 2023, Published online: 28 May 2023

References

  • Jägle EA, Choi P, Van Humbeeck J, et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res. 2014;29(17):2072–2079. doi:10.1557/jmr.2014.204
  • Sha W, Guo Z. Introduction to maraging steels. In: maraging steels. Elsevier; 2009. p. 1–16.
  • Lang FH, Kenyon N. Welding of Maraging Steels. 1971.
  • Pardal JM, Tavares SSM, Terra VF, et al. Modeling of precipitation hardening during the aging and overaging of 18Ni–Co–Mo–Ti maraging 300 steel. J Alloys Compd. 2005;393(1–2):109–113. doi:10.1016/j.jallcom.2004.09.049
  • Masneri C. Microstructural and mechanical properties of maraging steel parts produced by selective laser melting, Thesis, School of Industrial, Politecnico di Milano, Italy, 2016.
  • Casati R, Lemke JN, Tuissi A, et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting. Metals (Basel). 2016;6(9):218. doi:10.3390/met6090218
  • Jägle E, Sheng Z, Kürnsteiner P, et al. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials (Basel). 2017;10(1):8. doi:10.3390/ma10010008
  • Platl J, Rainer D, Leitner H, et al. Potential causes for cracking of a laser powder bed fused carbon-free FeCoMo alloy. BHM Berg- Huettenmaenn Monatsh. 2022;167(7):325–331. doi:10.1007/s00501-022-01238-y
  • Kempen K, Thijs L, Vrancken B, et al. Producing crack-free, high density M2 Hss parts by selective laser melting: pre-heating the baseplate. Proceedings of 24th International Solid Freeform Fabrication Symposium, pp. 131–139, 2013. [Online]. Available: http://utwired.engr.utexas.edu/lff/symposium/proceedingsarchive/pubs/Manuscripts/2013/2013-10-Kempen.pdf.
  • Burkert T, Fischer A. The effects of heat balance on the void formation within Marage 300 processed by selective laser melting. Solid Freeform Fabrication Symposium, 2015, p. 745–757.
  • Kempen K, Vrancken B, Buls S, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J Manuf Sci Eng 2014;136(6). doi:10.1115/1.4028513
  • Mertens R, Dadbakhsh S, Van Humbeeck J, et al. Application of base plate preheating during selective laser melting. Procedia CIRP. 2018;74(March):5–11. doi:10.1016/j.procir.2018.08.002
  • Bodziak S, Al-Rubaie Kassim S, Valentina LD, et al. Precipitation in 300 grade maraging steel built by selective laser melting: Aging at 510 °C for 2 h. Mater Charact 2019;151:73–83. doi:10.1016/j.matchar.2019.02.033
  • Carpenter Additive. Case Study. Maraging steel: the effects of alloy chemistry on processability. Carpenter Additive. https://carpentertechnology.com/hubfs/PDFs/MaragingSteel-The%20EffectsofAlloyChemistryonProcessability.pdf.
  • Effect of minor elements on properties of C300 Maraging steel parts by SLM process. Oerlikon Additive Manufacturing, 5 Th edition of the additive world conference on industrial 3D printing, Mar. 15–16, Eindhoven, 2017.
  • Yasa E, Kempen K, Kruth JJP, et al. Microstructure and mechanical properties of maraging steel 300 after selective laser melting. Solid Freeform Fabrication Symposium, pp. 383–396, 2010. [Online]. Available: http://utwired.engr.utexas.edu/lff/symposium/proceedingsArchive/pubs/Manuscripts/2010/2010-32-Yasa.pdf.
  • Hermann Becker T, Dimitrov D. The achievable mechanical properties of SLM produced maraging steel 300 components. Rapid Prototyp J. Apr. 2016;22(3):487–494. doi:10.1108/RPJ-08-2014-0096
  • Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys Procedia. 2011;12(Part 1):255–263. doi:10.1016/j.phpro.2011.03.033
  • Fanton L, Abdalla AJ, Fernandes S. Heat treatment and Yb­fiber laser welding of a maraging steel. Weld J. 2014;93(Sept.):362–368.
  • Guo L, Zhang L, Andersson J, et al. Additive manufacturing of 18% nickel maraging steels: defect, structure and mechanical properties: a review. J Mater Sci Technol. 2022;120:227–252. doi:10.1016/j.jmst.2021.10.056
  • Seol JB, Raabe D, Choi PP, et al. Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic-austenitic TRIP steels. Acta Mater. 2012;60(17):6183–6199. doi:10.1016/j.actamat.2012.07.064
  • Pinto LA, Escobar DP, Santos OdSH, et al. Estudo comparativo de identificação e quantificação de austenita retida em aço trip por difração de raios-x e difração de eletrons retroespalhados. ABM Proc. 2019;74:361–367. doi:10.5151/2594-5327-33196.
  • Tirumalasetty GK, van Huis MA, Kwakernaak C, et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel. Acta Mater 2012;60(3):1311–1321. doi:10.1016/j.actamat.2011.11.026
  • Kistler N. Optimizing metal powder chemistries for use in Additive Manufacturing. LPW Technolog Inc. Rapid + TCT Conference, Pittsburgh, PA, USA, May 2017, p. 9–11.
  • Horn M, Langer L, Schafnitzel M, et al. Influence of metal powder cross-contaminations on part quality in laser powder bed fusion: copper alloy particles in maraging steel feedstock. Procedia CIRP. 2020;94:167–172. doi:10.1016/j.procir.2020.09.032
  • Peet M. Prediction of martensite start temperature. Mater Sci Technol. 2015;31(11):1370–1375. doi:10.1179/1743284714Y.0000000714
  • Capdevila C, Caballero FG, de Andrés CG. Determination of Ms temperature in steels: a Bayesian neural network model. ISIJ Int. 2002;42(8):894–902. doi:10.2355/isijinternational.42.894
  • Capdevila C, Caballero FG, García De Andrés C. Analysis of effect of alloying elements on martensite start temperature of steels. Mater Sci Technol. 2003;19(5):581–586. doi:10.1179/026708303225001902
  • Ramesh Narayanan P, Sreekumar K, Natarajan A, et al. Metallographic investigations of the heat-affected zone II/parent metal interface cracking in 18Ni maraging steel welded structures. J Mater Sci. 1990;25(11):4587–4591. doi:10.1007/BF01129910
  • J.J. P, Savage WF. Effects of constitutional liquation on 18-Ni maraging steel weldments. Weld J. 1967;46(9):411s–422s.
  • Shankar V, Gill TPS, Mannan SL, et al. “A review of hot cracking in austenitic stainless steel weldments,” 1991.
  • Dupont JN, Lippold JC, Kiser SD. Welding metallurgy and weldability of nickel-base alloys. 2009.
  • Zhao Z, Dong C, Kong D, et al. Influence of pore defects on the mechanical property and corrosion behavior of SLM 18Ni300 maraging steel. Mater Charact. 2021;182:111514. doi:10.1016/j.matchar.2021.111514
  • Tan C, Zhou K, Ma W, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des. 2017;134:23–34. doi:10.1016/j.matdes.2017.08.026
  • Suryawanshi J, Prashanth KG, Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J Alloys Compd. 2017;725:355–364. doi:10.1016/j.jallcom.2017.07.177
  • Dehgahi S, Ghoncheh MH, Hadadzadeh A, et al. The role of titanium on the microstructure and mechanical properties of additively manufactured C300 maraging steels. Mater Des. 2020;194:108965. doi:10.1016/j.matdes.2020.108965

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.