109
Views
3
CrossRef citations to date
0
Altmetric
Manuscripts from the International Conference on Novel and Nano Materials ISNNM-2022, held in Jeju, Korea, November 14-18, 2022

Surface morphology transformation and densification behaviour of conventionally sintered AlFeCoNiSi high entropy alloys

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 650-661 | Received 28 Feb 2023, Accepted 05 Jun 2023, Published online: 16 Jun 2023

References

  • Dewangan SK, Mohan M, Kumar V, et al. A comprehensive review of the prospects for future hydrogen storage in materials-application and outstanding issues. Int J Energy Res. 2022;46(12):16150–16177. doi:10.1002/er.8322
  • Murty BS, Yeh JW, Ranganathan S. High-Entropy alloys. Elsevier; 2019.
  • Yeh JW. Physical metallurgy of high-entropy alloys. Jom. 2015;67(10):2254–2261. doi:10.1007/s11837-015-1583-5
  • Maulik O, Kumar D, Kumar S, et al. Structure and properties of lightweight high entropy alloys: a brief review. Mater Res Express. 2018;5(5):52001. doi:10.1088/2053-1591/aabbca
  • Chae MJ, Sharma A, Oh MC, et al. Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy. Met Mater Int. 2021;27(4):629–638. doi:10.1007/s12540-020-00823-5
  • Dewangan SK, Kumar D, Samal S, et al. Microstructure and mechanical properties of nanocrystalline AlCrFeMnNiWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys prepared by powder metallurgy route. J Mater Eng Perform. 2021;30(5):4421–4431. doi:10.1007/s11665-021-05552-3
  • Dewangan SK, Samal S, Kumar V. Microstructure exploration and an artificial neural network approach for hardness prediction in AlCrFeMnNiWx high-entropy alloys. J Alloys Compd. 2020;823:153766. doi:10.1016/j.jallcom.2020.153766
  • Han Z, Liu X, Zhao S, et al. Microstructure, phase stability and mechanical properties of Nb–Ni–Ti–Co–Zr and Nb–Ni–Ti–Co–Zr–Hf high entropy alloys. Prog Nat Sci: Mater Int. 2015;25(5):365–369. doi:10.1016/j.pnsc.2015.09.001
  • Thirathipviwat P, Song G, Bednarcik J, et al. Compositional complexity dependence of dislocation density and mechanical properties in high entropy alloy systems. Prog Nat Sci: Mater Int. 2020;30(4):545–551. doi:10.1016/j.pnsc.2020.07.002
  • Murali M, Babu SPK, Krishna BJ, et al. Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying. Prog Nat Sci: Mater Int. 2016;26(4):380–384. doi:10.1016/j.pnsc.2016.06.008
  • Dewangan SK, Kumar D, Sharma A, et al. Enhancing the oxidation resistance of nanocrystalline high-entropy AlCuCrFeMn alloys by the addition of tungsten. J Mater Res Technol. 2022;21:4960–4968. doi:10.1016/j.jmrt.2022.11.078
  • Varalakshmi S, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloys Compd. 2008;460(1–2):253–257. doi:10.1016/j.jallcom.2007.05.104
  • Nagarjuna C, Dewangan SK, Sharma A, et al. Application of artificial neural network to predict the crystallite size and lattice strain of CoCrFeMnNi high entropy alloy prepared by powder metallurgy. Met Mater Int. 2022;29(7):1968–1975.
  • Dewangan SK. Studies on microstructure, mechanical and high-temperature oxidation behaviour of tungsten containing high entropy alloys; 2021.
  • Koch CC. Nanocrystalline high-entropy alloys. J Mater Res. 2017;32(18):3435–3444. doi:10.1557/jmr.2017.341
  • Praveen S, Anupam A, Tilak R, et al. Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater Chem Phys. 2018;210:57–61. doi:10.1016/j.matchemphys.2017.10.040
  • Ananiadis E, Lentzaris K, Georgatis E, et al. Alnicrfemn equiatomic high entropy alloy: A further insight in its microstructural evolution, mechanical and surface degradation response. Met Mater Int. 2020;26(6):793–811. doi:10.1007/s12540-019-00401-4
  • Tung CC, Yeh JW, Shun T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett. 2007;61(1):1–5. doi:10.1016/j.matlet.2006.03.140
  • Liu H, Sun S, Zhang T, et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf Coat Technol. 2021;405:126522. doi:10.1016/j.surfcoat.2020.126522
  • Rohila S, Mane RB, Ummethala G, et al. Nearly full-density pressureless sintering of AlCoCrFeNi-based high-entropy alloy powders. J Mater Res. 2019;34(5):777–786. doi:10.1557/jmr.2019.9
  • Han J, Su B, Lu J, et al. Preparation of MoNbTaW refractory high entropy alloy powders by pressureless spark plasma sintering: crystal structure and phase evolution. Intermetallics. 2020;123:106832. doi:10.1016/j.intermet.2020.106832
  • Mane RB, Panigrahi BB. Sintering mechanisms of mechanically alloyed CoCrFeNi high-entropy alloy powders. J Mater Res. 2018;33(19):3321–3329. doi:10.1557/jmr.2018.225
  • Guo S. Phase selection rules for cast high entropy alloys: An overview. Mater Sci Technol. 2015;31(10):1223–1230. doi:10.1179/1743284715Y.0000000018
  • Kumar D, Maulik O, Bagri AS, et al. Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy. Mater Today Proc. 2016;3(9):2926–2933. doi:10.1016/j.matpr.2016.09.005
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505. doi:10.1063/1.3587228
  • Moravcikova GL, Moravcik I, Omasta M, et al. High-strength Al0.2Co1.5CrFeNi1.5Ti high-entropy alloy produced by powder metallurgy and casting: a comparison of microstructures, mechanical and tribological properties. Mater Charact. 2020;159:110046. doi:10.1016/j.matchar.2019.110046
  • Pickering EJ, Muñoz-Moreno R, Stone HJ, et al. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr Mater. 2016;113:106–109. doi:10.1016/j.scriptamat.2015.10.025
  • Fan JT, Zhang LJ, Yu PF, et al. Improved the microstructure and mechanical properties of AlFeCoNi high-entropy alloy by carbon addition. Mater Sci Eng A. 2018;728:30–39. doi:10.1016/j.msea.2018.05.013
  • Kumar A, Arora A, Chandrake R, et al. Effect of Si addition on alcocrfeni high entropy alloys prepared by vacuum arc melting. AIP Conf Proc. 2020;2247(1):050012.
  • Mohanty S, Maity TN, Mukhopadhyay S, et al. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mater Sci Eng A. 2017;679:299–313. doi:10.1016/j.msea.2016.09.062
  • Niu M, Bao S, Wu J, et al. Fabrication and properties of Ni3Si-TiC composites by in situ reaction sintering. J Mater Eng Perform. 2022: 1544–1024. doi:10.1007/s11665-022-07538-1
  • Xiao Y, Xu Y, Wu L, et al. Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis. Int J Mater Res. 2018;109(9):865–872. doi:10.3139/146.111669
  • Xiao M, Chen J, Kang J, et al. Effect of heat treatment process on mechanical properties and microstructure of FeAlCoCrNiTi0.5 alloy. AIP Adv. 2018;8(9):095322. doi:10.1063/1.5050434

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.