119
Views
2
CrossRef citations to date
0
Altmetric
Manuscripts from the International Conference on Novel and Nano Materials ISNNM-2022, held in Jeju, Korea, November 14-18, 2022

Correlation between the nanomechanical characteristic and the phase transformation of BCC-based high entropy alloys produced via powder metallurgy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 669-678 | Received 02 Mar 2023, Accepted 11 Jun 2023, Published online: 21 Jun 2023

References

  • Murty BS, Yeh JW, Ranganathan S. High entropy alloys. Butterworth-Heinemann: Elsevier; 2014.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.
  • Li Z, Zhao S, Ritchie RO, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci. 2019;102:296–345.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218.
  • Chae MJ, Sharma A, Oh MC, et al. Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy. Met Mater Int. 2021;27:629–638.
  • Sharma A, Oh MC, Ahn B. Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy. Mater Sci Eng A. 2020;797:140066.
  • Chae MJ, Lee H, Sharma A, et al. Effect of light (X = Mg, Si) and heavy (X = Zn) metals on the microstructural evolution and densification of AlCuFeMnTi-X high-entropy alloy processed by advanced powder metallurgy. Powder Metall. 2021;64:228–234.
  • Sharma A, Lee H, Ahn B. Effect of additive elements (x = Cr, Mn, Zn, Sn) on the phase evolution and thermodynamic complexity of AlCuSiFe-x high entropy alloys fabricated via powder metallurgy. Met Mater Int. 2022;28(9):2216–2224.
  • Oh MC, Lee H, Sharma A, et al. Controlled valence electron concentration approach to tailor the microstructure and phase stability of an entropy-enhanced AlCoCrFeNi alloy. Metall Mater Trans A. 2022;53(5):1831–1844.
  • Wang J, Chai J, Zhang H, et al. Microstructure investigations of Fe50Mn30Co10Cr10 dual–phase high–entropy alloy under Fe ions irradiation. J Nucl Mater. 2021;552:153006.
  • Dada M, Popoola P, Mathe N. Recent advances of high entropy alloys for aerospace applications: a review. World J Eng. 2021;20:43–74.
  • Li Z, Tasan C, Pradeep KG, et al. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater. 2017;131:323–335.
  • Xiang S, Luan H, Wu J, et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J Alloy Compd. 2019;773:387–392.
  • Tong CJ, Chen YL, Yeh JW, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005;36(4):881–893.
  • Tsai CW, Tsai MH, Yeh JW, et al. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. J Alloy Compd. 2010;490:160–165.
  • Dong Y, Zhou K, Lu Y, et al. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater Des. 2014;57:67–72.
  • Chen MR, Lin SJ, Yeh JW, et al. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall Mater Trans A. 2006;37:1363–1369.
  • Oh MC, Sharma A, Lee H, et al. Phase separation and mechanical behavior of AlCoCrFeNi-X (X = Cu, Mn, Ti) high entropy alloys processed via powder metallurgy. Intermetallics. 2021;139(3):107369.
  • Nene SS, Agrawal P, Frank M, et al. Transformative high entropy alloy conquers the strength-ductility paradigm by massive interface strengthening. Scr. Mater. 2021;203:114070.
  • Xian X, Lin L, Zhong Z, et al. Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys. Mater Sci Eng A. 2018;713:134–140.
  • Peng Z, Luo ZB, Li BW, et al. Microstructure and mechanical properties of lightweight AlCrTiV0.5Cux high-entropy alloys. Rare Met. 2022;41:2016–2020.
  • Ji CW, Ma AB, Jiang JH. Mechanical properties and corrosion behavior of novel Al-Mg-Zn-Cu-Si lightweight high entropy alloys. J Alloys Compd. 2022;900:163508.
  • Dabrowa J, Cieslak G, Stygar M, et al. Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics. 2017;84:52–61.
  • Wu PH, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys. Mater Sci Eng A. 2015;642:142–149.
  • Yi JJ, Yang L, Xu MQ, et al. A novel Cu-containing Al0.5CrCuFeV high-entropy alloy with a balanced strength-ductility trade-Off. Phys Met Metallogr. 2021;122:1338–1341.
  • Liu X, Lei W, Ma L, et al. On the microstructures, phase assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys. J Alloy Compd. 2015;630:151–157.
  • Kumar A, Swarnakar AK, Chopkar M. Phase evolution and mechanical properties of AlCoCrFeNiSix high-entropy alloys synthesized by mechanical alloying and spark plasma sintering. J Mater Eng Perform. 2018;27(7):3304–3314.
  • Tsai MH, Yeh JW. High-entropy alloys: a critical review. Mater Res Lett. 2014;2:107–123.
  • Torralba JM, Alvaredo P, Junceda AG. High-entropy alloys fabricated via powder metallurgy. A critical review. Powder Metall. 2019;62(2):84–114.
  • Sharma A, Lee H, Ahn B. Microstructure and reactivity of cryomilled Al-Ni energetic material with nanoscale lamellar structure. J Mater Sci. 2022;57(38):17957–17966.
  • Lee H, Sharma A, Ahn B. Microstructural evolution and compressive properties of nanocrystalline Ti-Fe alloy fabricated via cryomilling and spark plasma sintering. J Mater Sci. 2022;57(38):18089–18100.
  • Park C, Lee H, Lee N, et al. Upcycling of abandoned banner via thermocatalytic process over a MnFeCoNiCu high-entropy alloy catalyst. J Hazard Mater. 2022;440:129825.
  • Kim M, Sharma A, Chae MJ, et al. Microstructural evolution of AlCuFeMnTi-0.75Si high entropy alloy processed by mechanical alloying and spark plasma sintering. Arch Metall Mater. 2021;66(2):703–707.
  • Ungar T. Microstructural parameters from X-ray diffraction peak broadening. Scr. Mater. 2004;51(8):777–781.
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505.
  • Laplanche G, Berglund S, Reinhart C, et al. Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Mater. 2018;161:338–351.
  • Rao SG, Shu R, Boyd R, et al. The effects of copper addition on phase composition in (CrFeCo)1-yNy multicomponent thin films. Appl Surf Sci. 2022;572:151315.
  • Verma A, Tarate P, Abhyankar AC, et al. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scr Mater. 2019;161:28–31.
  • Hassan MA, Yehia HM, Mohamed ASA, et al. Effect of copper addition on the AlCoCrFeNi high entropy alloys properties via the electroless plating and powder metallurgy technique. Crystals (Basel). 2021;11(5):540.
  • Boer FR, Mattens WCM, Boom R, et al. Cohesion in metals. Transition metal alloys. Netherlands; 1988, N.p.
  • Asadabad MA, Eskandri MJ. Electron diffraction, modern electron microscopy in physical and life sciences. London: InTech; 2016.
  • Zhu JM, Meng JL, Liang JL. Microstructure and mechanical properties of multi-principal component AlCoCrFeNiCu x alloy. Rare Met. 2016;35:385–389. doi:10.1007/s12598-014-0268-5
  • Dong Y, Lu Y, Li J, et al. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics. 2014;52:105–109. doi:10.1016/j.intermet.2014.04.001
  • Tseng K, Yang Y, Juan CC, et al. A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci China Technol Sci. 2018;61:184–188. doi:10.1007/s11431-017-9073-0
  • Chauhan P, Yebaji S, Nadakuduru VN, et al. Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering. J Alloy Compd. 2020;820:153367. doi:10.1016/j.jallcom.2019.153367
  • Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high–temperature properties. J Alloy Compd. 2018;760:15–30. doi:10.1016/j.jallcom.2018.05.067
  • Kang M, Lim K, Won J, et al. Al-Ti-Containing lightweight high-entropy alloys for intermediate temperature applications. Entropy. 2018;20:355. doi:10.3390/e20050355
  • Ye YF, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today. 2016;19(6):349–362. doi:10.1016/j.mattod.2015.11.026
  • Sharma A, Lee H, Ahn B. Tailoring compressive strength and absorption energy of lightweight multi-phase AlCuSiFeX (X = Cr, Mn, Zn, Sn) high-entropy alloys processed via powder metallurgy. Materials (Basel). 2021;14(17):4945. doi:10.3390/ma14174945
  • Laplanche G, Gadaud P, Horst O, et al. Temperature dependences of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J Alloy Compd. 2015;623:348–353. doi:10.1016/j.jallcom.2014.11.061
  • Soni V, Senkov ON, Gwalani B, et al. Microstructural design for improving ductility of An initially brittle refractory high entropy alloy. Sci Rep. 2018;8:8816. doi:10.1038/s41598-018-27144-3
  • Yu Y, Shi P, Feng K, et al. Effects of Ti and Cu on the microstructure evolution of AlCoCrFeNi high-entropy alloy during heat treatment. Acta Metall Sin. 2020;33:1077–1090. doi:10.1007/s40195-020-01002-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.