183
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of nickel-titanium-iron shape memory alloys by powder metallurgy route and analyses of their physical and mechanical behaviour

, , & ORCID Icon
Pages 557-570 | Received 20 Feb 2023, Accepted 07 Jul 2023, Published online: 14 Jul 2023

References

  • Qin Q, Wen Y, Wang G, et al. Effects of solution and aging treatments on corrosion resistance of As-cast 60NiTi alloy. J Mater Eng Perform. 2016;25(12):5167–5172. doi:10.1007/s11665-016-2402-z
  • Sevcikova J, Pavkova Goldbergova M. Biocompatibility of NiTi alloys in the cell behaviour. BioMetals. 2017;30(2):163–169. doi:10.1007/s10534-017-0002-5
  • Velmurugan C, Senthilkumar V, Dinesh S, et al. Machining of NiTi-shape memory alloys-a review. Mach Sci Technol. 2018;22(3):355–401. doi:10.1080/10910344.2017.1365894
  • Dolce M, Cardone D, Mechanical behaviour of shape memory alloys for seismic applications 2. austenite NiTi wires subjected to tension. Int J Mech Sci. 2001;43(11):2657–2677. doi:10.1016/S0020-7403(01)00050-9
  • Saadat S. An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Mater Struct. 2002;11(2):218–229. doi:10.1088/0964-1726/11/2/305
  • Wang L, Wang C, Zhang LC, et al. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires. Sci Rep. 2016;6(1):23905. doi:10.1038/srep23905
  • Hsieh SF, Chen SL, Lin HC, et al. A study of TiNiCr ternary shape memory alloys. J Alloys Compd. 2010;494(1–2):155–160. doi:10.1016/j.jallcom.2010.01.052
  • Li Y, Kang X, Yin X, et al. Microstructure and mechanical properties of cold-rolled Ti50Ni47Fe3 shape memory alloy. Trans Nonferrous Met Soc China. 2014;24(9):2890–2895. doi:10.1016/S1003-6326(14)63423-3
  • Huang TS, Ou SF, Kuo CH, et al. Effects of thermomechanical treatment on phase transformation of the Ti50Ni49W1 shape memory alloy. Metals (Basel). 2020;10(4):527. doi:10.3390/met10040527
  • Kolomytsev VI. The effect of alloying by 3d, 4d, 5d transition metal klements on martensite transformation temperatures in compound TiNi. Scr Metall Mater. 1994;31(10):1415–1420. doi:10.1016/0956-716X(94)90128-7
  • Edmonds KR, Hwang CM. Phase transformations in ternary TiNix alloys. Scr Metall. 1986;20(5):733–737. doi:10.1016/0036-9748(86)90501-6
  • Hwang CM, Wayman CM. Phase transformations in TiNiFe, TiNiAl and TiNi alloys. Scr Metall. 1983;17(11):1345–1350. doi:10.1016/0036-9748(83)90230-2
  • Bram M, Ahmad-Khanlou A, Heckmann A, et al. Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater Sci Eng A. 2002;337(1–2):254–263. doi:10.1016/S0921-5093(02)00028-X
  • Klementová M, Karlík M, Novák P, et al. Structure determination of a new phase Ni 8 Ti 5 by electron diffraction tomography. Intermetallics. 2017;85:110–116. doi:10.1016/j.intermet.2017.02.003
  • Monogenov AA. Structure and properties of porous alloys based on NiTi doped by Al, fabricated by SHS-method. KnE Mater Sci. 2017;2(1):62. doi:10.18502/kms.v2i1.781
  • Velmurugan C, Senthilkumar V. Optimization of spark plasma sintering parameters for NiTiCu shape memory alloys. Mater Manuf Processes. 2019;34(4):369–378. doi:10.1080/10426914.2018.1512118
  • Kyogoku H, Terayama A. Study on development of Ti-based shape memory alloys using pulse current sintering. J Jpn Soc Powder Powder Metall. 2011;58(1):50–56. doi:10.2497/jjspm.58.50
  • Duerig T, Pelton A, Stöckel D, et al. An overview of nitinol medical applications. Mater Sci Eng A. 1999;273–275:149–160. doi:10.1016/S0921-5093(99)00294-4.
  • Amini R, Alijani F, Ghaffari M, et al. Formation of B19′, B2, and amorphous phases during mechano-synthesis of nanocrystalline NiTi intermetallics. Powder Technol. 2014;253:797–802. doi:10.1016/j.powtec.2013.12.029
  • Speirs M. On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shape Mem Superelasticity. 2016;2(4):310–316. doi:10.1007/s40830-016-0083-y
  • Lu HZ, Ma HW, Cai WS, Luo X, Wang Z, Song CH, Yang C, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021; 219: 117261. doi:10.1016/j.actamat.2021.117261
  • Lu HZ, Liu LH, Yang C, et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. J Mater Sci Technol. 2022;101:205–216. doi:10.1016/j.jmst.2021.06.019
  • Sergey A, Valentina H, Timofey C, Victor G, Ji-hoon K, Ji-soon K, et al. Fabrication and study of double sintered TiNi-based porous alloys. Smart Mater Struct. 2017;26(5):0057001. doi:10.1088/1361-665X/aa681a
  • Komarov VV. A review of radio frequency and microwave sustainability-oriented technologies. Sustain Mater Technol. 2021;28:e00234. doi:10.1016/j.susmat.2020.e00234.
  • Karlík M. TEM phase analysis of NiTi shape memory alloy prepared by self-propagating high-temperature synthesis. Adv Mater Process Technol. 2017;3(1):58–69. doi:10.1080/2374068X.2016.1247338.
  • Cai WS, Lu HZ, Li HZ, et al. Microstructural evolution and superelastic properties of ultrafine-grained NiTi-based shape memory alloy via sintering of amorphous ribbon precursor. J Mater Sci Tech. 2023;138:80–92. doi:10.1016/j.jmst.2022.08.011.
  • Ismail MH, Razali R, Abdullah Z, et al. Shape memory behaviour of NiTi alloy produced by MIM using palm stearin based binder. Adv Mat Res. 2016;1133:295–299. doi:10.4028/www.scientific.net/AMR.1133.295
  • Shearwood C, Fu YQ, Yu L, et al. Spark plasma sintering of TiNi nano-powder. Scr Mater. 2005;52(6):455–460. doi:10.1016/j.scriptamat.2004.11.010
  • Huang WM, Ding Z, Wang CC, et al. Shape memory materials, technology. Vol. 13. Urbana-Champaign: Cambridge University Press; 2010.
  • Qian L, Sun Q, Zhou Z, et al. The role of martensite reorientation in the fretting behaviour of nickel titanium shape memory alloy. Proc Inst Mech Eng Part J J Eng Tribol. 2008;222(7):887–897. doi:10.1243/13506501JET427
  • Clayton P. Tribological behavior of a titanium-nickel alloy. Wear. 1993;162–164:202–210. doi:10.1016/0043-1648(93)90502-D.
  • Singh J, Alpas AT. Dry sliding wear mechanisms in a Ti50Ni47Fe3 intermetallic alloy. Wear. 1995;181–183:302–311.
  • Zhang C, Farhat ZN. Sliding wear of superelastic TiNi alloy. Wear. 2009;267(1–4):394–400. doi:10.1016/j.wear.2008.12.093
  • Liu P, Kan Q, Yin H, et al. Effect of grain size on wear resistance of nanocrystalline NiTi shape memory alloy. Mater Lett. 2019;241:43–46. doi:10.1016/j.matlet.2019.01.025
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583. doi:10.1557/JMR.1992.1564
  • Bertheville B, Neudenberger M, Bidaux JE, et al. Powder sintering and shape-memory behaviour of NiTi compacts synthesized from Ni and TiH2. Mater Sci Eng A. 2004;384(1–2):143–150. doi:10.1016/S0921-5093(04)00837-8
  • Khanlari K, Ramezani M, Kelly P, et al. Comparison of the reciprocating sliding wear of 58Ni39Ti-3Hf alloy and baseline 60NiTi. Wear. 2018;408–409:120–130. doi:10.1016/0043-1648(70)90237-1.
  • J. De Keyzer. Thermodynamic modeling of the Fe-Ni-Ti system: a multiple sublattice approach. 2008.
  • Tang CY, Zhang LN, Wong CT, et al. Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Mater Sci Eng A. 2011;528(18):6006–6011. doi:10.1016/j.msea.2011.04.040
  • Whitney M, Corbin SF, Gorbet RB, et al. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Mater. 2008;56(3):559–570. doi:10.1016/j.actamat.2007.10.012
  • Hornbuckle C, Yu B, Noebe XX, et al. Hardening behavior and phase decomposition in very Ni-rich nitinol alloys. Mater Sci Eng A. 2015;639:336–344. doi:10.1016/j.msea.2015.04.079
  • Lee J, Hwang J, Lee D, et al. Enhanced mechanical properties of spark plasma sintered NiTi composites reinforced with carbon nanotubes. J Alloys Compd. 2014;617:505–510. doi:10.1016/j.jallcom.2014.08.091
  • Zhang Y, Cheng X, Cai H, et al. Fabrication, characterization and tensile property of a novel Ti2Ni/TiNi micro-laminated composite. Mater Des. 2016;92:486–493. doi:10.1016/j.matdes.2015.12.014
  • Zhang J.In situ synchrotron X-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite. Appl Phys Lett. 2014;105(4):041910. doi:10.1063/1.4892352
  • Wu S. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. J Biomed Mater Res A; 2013;101A(9):2586–2601. doi:10.1002/jbm.a.34568
  • Godinez-Madera MA. Nanoindentation and tribological properties of Ni51Ti49−xTax (x &lt; 5 at. %) alloys fabricated by arc melting<5 at.%) alloys fabricated by arc melting. Mater Lett 2021;284:129010. doi:10.1016/j.matlet.2020.129010
  • Farvizi M. Effect of starting materials on the wear performance of NiTi-based composites. Wear. 2015;334–335:35–43. doi:10.1016/j.wear.2015.04.011.
  • Gao F, Wang HM. Dry sliding wear property of a laser melting/deposited Ti2Ni/TiNi intermetallic alloy. Intermetallics. 2008;16(2):202–208. doi:10.1016/j.intermet.2007.09.008
  • Parida J, Mishra SC, Behera A, et al. Synthesis and characterization of Ti50Ni(50−X)FeX alloy produced by mechanical alloying and pressure-less sintering. Met Mater Int. 2022. doi:10.1007/s12540-022-01277-7.
  • Waqar S, Wadood A, Mateen A, et al. Effects of Ni and Cr addition on the wear performance of NiTi alloy. Int J Adv Manuf Technol. 2020;108(3):625–634. doi:10.1007/s00170-020-05380-0
  • Neupane R. Indentation and wear behavior of superelastic TiNi shape memory alloy. Nova Scotia: Dalhousie University Halifax; 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.