164
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and mechanical properties of Ti-Zr alloys fabricated by two-step spark plasma sintering from TiH2 and ZrH2 powders

, ORCID Icon, , &
Pages 472-481 | Received 09 Mar 2023, Accepted 10 Jul 2023, Published online: 17 Jul 2023

References

  • Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33(3):477–486. doi:10.1007/s11661-002-0109-2.
  • Ongtrakulkij G, Khantachawana A, Kondoh K. Effects of media parameters on enhance ability of hardness and residual stress of Ti6Al4 V by fine shot peening. Surf Interfaces. 2020;18:100424. doi:10.1016/j.surfin.2019.100424
  • Q. Zeng, Z.Q. Chen, Q.L. Li, et al. Surface modification of titanium implant and in vitro biocompatibility evaluation. Key Eng Mat. 2005;288-289:315–318. doi:10.4028/www.scientific.net/KEM.288-289.315.
  • Quinn J, McFadden R, Chan CW, et al. Titanium for orthopaedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation. Iscience. 2020;23(11):101745. doi:10.1016/j.isci.2020.101745.
  • Elias C, Lima JHC, Valiev R, et al. Biomedical applications of titanium and its alloys. Jom. 2008;60(3):46–49. doi:10.1007/s11837-008-0031-1
  • Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimer’s Disease. 2011;2011:276393. doi:10.4061/2011/276393.
  • Okazaki Y, Rao S, Asao S, et al. Effects of Ti, Al and V concentrations on cell viability. Mater Trans JIM. 1998;39(10):1053–1062. doi:10.2320/matertrans1989.39.1053
  • Grandin HM, Berner S, Dard M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants. Materials. 2012;5(8):1348–1360. doi:10.3390/ma5081348
  • Ho W-F, Chen W-K, Wu S-C, et al. Structure, mechanical properties, and grindability of dental Ti–Zr alloys. J Mater Sci: Mater Med. 2008;19(10):3179–3186. doi:10.1007/s10856-008-3454-x
  • Froes F, Mashl SJ, Hebeisen JC, et al. The technologies of titanium powder metallurgy. Jom. 2004;56(11):46–48. doi:10.1007/s11837-004-0252-x
  • Weston N, Derguti F, Tudball A, et al. Spark plasma sintering of commercial and development titanium alloy powders. J Mater Sci. 2015;50(14):4860–4878. doi:10.1007/s10853-015-9029-6
  • Wang H, Fang ZZ, Sun P. A critical review of mechanical properties of powder metallurgy titanium. Int J Powder Metall. 2010;46(5):45–57.
  • Kumar DB, Balashanmuganathan SB, Aravind Jerrin KM, et al. Review of spark plasma sintering process. IOP Conference Series: Materials Science and Engineering; 2020. IOP.
  • Suesawadwanid N, Khantachawana A, Srirussamee K, et al. Effect of Nb content and water quenching on microstructure and mechanical properties of Ti-Nb alloys fabricated by spark plasma sintering. Powder Metall. 2022;65:1–13. doi:10.1080/00325899.2022.2029303.
  • Suárez M, Fernández A, Menéndez JL, et al. Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. Sintering Appl. 2013;13:319–342. doi:10.5772/53706.
  • Ivasishin O, Moxson V. Low-cost titanium hydride powder metallurgy. In: Titanium powder metallurgy. Amsterdam: Elsevier; 2015. p. 117–148.
  • Ivasyshyn O, Savvakin D. Synthesis of zirconium-and titanium-based alloys with the use of their hydrides. Mater Sci. 2016;51(4):465–474. doi:10.1007/s11003-016-9863-y
  • Korzhov V, Karpov MI, Shekhtman VS, et al. Structure of the Ti-45 wt% Zr alloy obtained by the powder metallurgy method from TiH2 and ZrH2 powders. Proceedings of the Euro Powder Metallurgy Congress and Exhibition, Euro PM 2007; 2007.
  • Dolukhanyan S, Aleksanyan AG, Ter-Galstyan OP, et al. Specifics of the formation of alloys and their hydrides in Ti-Zr-H system. Russian J Phys Chem B. 2007;1(6):563–569. doi:10.1134/S1990793107060085
  • Kondoh K, Fukuo M, Kariya S, et al. Quantitative strengthening evaluation of powder metallurgy Ti–Zr binary alloys with high strength and ductility. J Alloys Compd. 2021;852:156954. doi:10.1016/j.jallcom.2020.156954
  • Sharma B, Vajpai SK, Ameyama K. Preparation of strong and ductile pure titanium via two-step rapid sintering of TiH2 powder. J Alloys Compd. 2016;683:51–55. doi:10.1016/j.jallcom.2016.05.020
  • Bragg WL. The diffraction of short electromagnetic waves by a crystal. Scientia. 1929;23(45):43.
  • Wang B, Ruan W, Liu J, et al. Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti–Zr alloys for dental application. J Biomater Appl. 2019;33(6):766–775. doi:10.1177/0885328218811052
  • Wasz M, Brotzen FR, McLellan RB, et al. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int Mater Rev. 1996;41(1):1–12. doi:10.1179/imr.1996.41.1.1
  • Finlay WL, Snyder JA. Effects of three interstitial solutes (nitrogen, oxygen, and carbon) on the mechanical properties of high-purity, alpha titanium. Jom. 1950;2(2):277–286. doi:10.1007/BF03399001
  • Chirico C, Tsipas SA, Wilczynski P, et al. Beta titanium alloys produced from titanium hydride: Effect of alloying elements on titanium hydride decomposition. Metals. 2020;10(5):682. doi:10.3390/met10050682
  • Sharma B, Shogo Y, Kawabata M, et al. Fabrication of Ti from a blend of Ti and TiH2 powders via powder metallurgy processing. Mater Manuf Processes. 2019;34(15):1745–1752. doi:10.1080/10426914.2019.1669802
  • Goossens N, Lapauw T, Lambrinou K, et al. Synthesis of MAX phase-based ceramics from early transition metal hydride powders. J Eur Ceram Soc. 2022;42(16):7389–7402. doi:10.1016/j.jeurceramsoc.2022.09.025.
  • Numakura H, Koiwa M, Asano H, et al. X-ray diffraction study on the formation of γ titanium hydride. Scr Metall. 1986;20(2):213–216. doi:10.1016/0036-9748(86)90128-6
  • Murray JL. 1987. Phase diagram of titanium alloys. ASM. 182.
  • Callister WD, Rethwisch DG. Materials science and engineering: an introduction. Vol. 9. New York: Wiley; 2018.
  • Donachie M. Titanium: A Technical Guide, second edition, ASM International. 2000: 13–24. doi:10.31399/asm.tb.ttg2.9781627082693.
  • Paramore JD, Nishita M, Park S-Y, et al. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys. Sci Rep. 2017;7(1):1–12. doi:10.1038/s41598-016-0028-x
  • Li X, Chen X, Li B, et al. Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment. Mater Charact. 2019;157:109919. doi:10.1016/j.matchar.2019.109919
  • Zheng Y, Yao X, Su Y, et al. High strength titanium with a bimodal microstructure fabricated by thermomechanical consolidation of a nanocrystalline TiH2 powder. Mater Sci Eng A. 2017;686:11–18. doi:10.1016/j.msea.2017.01.029
  • Homma T, Matayoshi Y, Voskoboinikov R. Application of the Bons–Azuma method and determination of grain growth mechanism in rolled Ti–Zr alloys. Philos Mag Lett. 2015;95(12):564–573. doi:10.1080/09500839.2015.1122243
  • Smith WF, Hashemi J, Presuel-Moreno F. Foundations of materials science and engineering. Vol. 509. 2006, New York: McGraw-hill.
  • Hall E. Variation of hardness of metals with grain size. Nature. 1954;173(4411):948–949. doi:10.1038/173948b0.
  • Briant C, Wang Z, Chollocoop N. Hydrogen embrittlement of commercial purity titanium. Corros Sci. 2002;44(8):1875–1888. doi:10.1016/S0010-938X(01)00159-7
  • Okazaki Y, Ito Y, Ito A, et al. Effect of alloying elements on mechanical properties of titanium alloys for medical implants. Mater Trans JIM. 1993;34(12):1217–1222. doi:10.2320/matertrans1989.34.1217
  • Huez J, Helbert AL, Feaugas X, et al. Damage process in commercially pure α-titanium alloy without (Ti40) and with (Ti40-H) hydrides. Metall Mater Trans A. 1998;29(6):1615–1628. doi:10.1007/s11661-998-0085-2
  • Correa D, Vicente FB, Donato TAG, et al. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications. Mater Sci Eng: C. 2014;34:354–359. doi:10.1016/j.msec.2013.09.032
  • Senkov O, Dubois M, Jonas J. Elastic moduli of titanium-hydrogen alloys in the temperature range 20 C to 1100 C. Metall Mater Trans A. 1996;27(12):3963–3970. doi:10.1007/BF02595645
  • Torres-Sanchez C, Al Mushref FRA, Norrito M, et al. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater Sci Eng C. 2017;77:219–228. doi:10.1016/j.msec.2017.03.249
  • Zhao X, Niinomi M, Nakai M, et al. Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater Sci Eng C. 2011;31(7):1436–1444. doi:10.1016/j.msec.2011.05.013
  • Tane M, Okuda Y, Todaka Y, et al. Elastic properties of single-crystalline ω phase in titanium. Acta Mater. 2013;61(20):7543–7554. doi:10.1016/j.actamat.2013.08.036
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243(1–2):231–236. doi:10.1016/S0921-5093(97)00806-X
  • Donachie M. Relationships among structures, processing, and properties. Titanium: A Technical Guide, second edition, ASM International. 2000: 95–121. doi:10.31399/asm.tb.ttg2.9781627082693.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.