966
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

CIP-FAST: assessing the production of complex geometry titanium components from powders by combining Cold Isostatic Pressing (CIP) and Field Assisted Sintering Technology (FAST)

ORCID Icon, , &
Pages 482-492 | Received 17 May 2023, Accepted 11 Jul 2023, Published online: 20 Jul 2023

References

  • Froes FH. 8 – Powder metallurgy of titanium alloys. In: I Chang, Y Zhao, editors. Advances in powder metallurgy. Woodhead; 2013. p. 202–240. doi:10.1533/9780857098900.2.202
  • Childerhouse T, Jackson M. Near net shape manufacture of titanium alloy components from powder and wire: a review of state-of-the-art process routes. Metals (Basel). Jun. 2019;9(6):689. doi:10.3390/met9060689
  • Fang ZZ, Paramore JD, Sun P, et al. Powder metallurgy of titanium – past, present, and future. Int Mater Rev. Aug. 2017: 1–53. doi:10.1080/09506608.2017.1366003
  • Wang H, Fang ZZ, Sun P. A critical review of mechanical properties of powder metallurgy titanium. Int J Powder Metall. 2010;46(5):14.
  • Dehghan-Manshadi A, Bermingham M, Dargusch MS, et al. Metal injection moulding of titanium and titanium alloys: challenges and recent development. Powder Technol Sep. 2017;319:289–301. doi:10.1016/j.powtec.2017.06.053
  • Ebel T. Metal injection molding (MIM) of titanium and titanium alloys. In: Handbook of metal injection molding. Elsevier; 2012. p. 415–445. doi:10.1533/9780857096234.4.415
  • Weston NS, Derguti F, Tudball A, et al. Spark plasma sintering of commercial and development titanium alloy powders. J Mater Sci Jul. 2015;50(14):4860–4878. doi:10.1007/s10853-015-9029-6
  • Weston NS, Jackson M. FAST-forge of titanium alloy swarf: a solid-state closed-loop recycling approach for aerospace machining waste. Metals (Basel). Feb. 2020;10(2):296. doi:10.3390/met10020296
  • Arnaud C, Manière C, Chevallier G, et al. Dog-bone copper specimens prepared by one-step spark plasma sintering. J Mater Sci. Nov. 2015;50(22):7364–7373. doi:10.1007/s10853-015-9293-5
  • Voisin T, Monchoux J-P, Durand L, et al. An innovative way to produce γ-TiAl blades: spark plasma sintering: an innovative way to produce γ-TiAl blades. Adv Eng Mater. Oct. 2015;17(10):1408–1413. doi:10.1002/adem.201500019
  • Manière C, Durand L, Weibel A, et al. A sacrificial material approach for spark plasma sintering of complex shapes. Scr Mater. Nov. 2016;124:126–128. doi:10.1016/j.scriptamat.2016.07.006
  • Manière C, Nigito E, Durand L, et al. Spark plasma sintering and complex shapes: the deformed interfaces approach. Powder Technol Oct. 2017;320:340–345. doi:10.1016/j.powtec.2017.07.048
  • Manière C, Torresani E, Olevsky E. Simultaneous spark plasma sintering of multiple complex shapes. Materials (Basel). Feb. 2019;12(4):557. doi:10.3390/ma12040557
  • Beynet Y, Epherre R. Method for manufacturing a part of complex shape by pressure sintering starting from a preform, Patent EP 3 860 785 B1, 2021.
  • McCracken CG, Barbis DP, Deeter RC. Key characteristics of hydride–dehydride titanium powder. Powder Metall Jul. 2011;54(3):180–183. doi:10.1179/174329011X13045076771849
  • Mostafaei Elliott A, Amy M, Barnes JE, et al. Binder jet 3D printing – process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. Jun. 2021;119:100707. doi:10.1016/j.pmatsci.2020.100707
  • Attia UM. Cold-isostatic pressing of metal powders: a review of the technology and recent developments. Crit Rev Solid State Mater Sci. Nov. 2021;46(6):587–610. doi:10.1080/10408436.2021.1886043
  • Abkowitz SM, Abkowitz S, Fisher H. Breakthrough claimed for titanium PM. Met Powder Rep. Nov. 2011;66(6):16–21. doi:10.1016/S0026-0657(12)70015-2
  • Abkowitz S, Abkowitz S, Fisher H. Titanium alloy components manufacture from blended elemental powder and the qualification process. In: Titanium powder metallurgy. Elsevier; 2015. p. 299–312. doi:10.1016/B978-0-12-800054-0.00017-4
  • Hocquet S, Dupont V, Cambier F, et al. Densification of complex shape ceramics parts by SPS. J Eur Ceram Soc. Jul. 2020;40(7):2586–2596. doi:10.1016/j.jeurceramsoc.2019.10.038
  • Bernard-Granger G, Guizard C. Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater Jun. 2007;55(10):3493–3504. doi:10.1016/j.actamat.2007.01.048
  • Robie RA, Hemingway BS. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10^5 pascals) pressure and at higher temperatures, vol. U.S. Geological Survey Bulletin 2131. United States GovernmentPrinting Office, 1995. doi:10.3133/b2131
  • Vasant Kumar R, Chivall J, Brook D. ‘The interactive Ellingham diagram,’ The interactive Ellingham diagram. [cited May 10, 2023]. Available from: https://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php.
  • Laptev AM, Hennicke J, Ihl R. Influence of CFRC insulating plates on spark plasma sintering process. Metals (Basel). Feb. 2021;11(3):393. doi:10.3390/met11030393
  • Laptev AM, Bram M, Vanmeensel K, et al. Enhancing efficiency of field assisted sintering by advanced thermal insulation. J Mater Process Technol. Dec. 2018;262:326–339. doi:10.1016/j.jmatprotec.2018.07.008
  • Miklaszewski A, Garbiec D, Niespodziana K. Sintering behavior and microstructure evolution in cp-titanium processed by spark plasma sintering. Adv Powder Technol. Jan. 2018;29(1):50–57. doi:10.1016/j.apt.2017.10.010
  • Wasz ML, Brotzen FR, McLellan RB, et al. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int Mater Rev. Jan. 1996;41(1):1–12. doi:10.1179/imr.1996.41.1.1
  • Deshmukh V, Kadam R, Joshi SS. Removal of alpha case on titanium alloy surfaces using chemical milling. Mach Sci Technol. Apr. 2017;21(2):257–278. doi:10.1080/10910344.2017.1284558
  • Donachie MJ. Introduction to selection of titanium alloys. In: Titanium: a technical guide. ASM International; 2000. p. 5–11. doi:10.31399/asm.tb.ttg2.t61120005
  • Gardner HM, Gopon P, Magazzeni CM, et al. Quantifying the effect of oxygen on micro-mechanical properties of a near-alpha titanium alloy. J Mater Res. Jun. 2021;36(12):2529–2544. doi:10.1557/s43578-020-00006-3
  • Oh J-M, Lee B-G, Cho S-W, et al. Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4 V. Met Mater Int. Oct. 2011;17(5):733–736. doi:10.1007/s12540-011-1006-2
  • Gaddam R, Sefer B, Pederson R, et al. Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4 V. IOP Conf Ser Mater Sci Eng. Dec. 2013;48:012002. doi:10.1088/1757-899X/48/1/012002
  • Ilevbare G. INL advanced manufacturing capabilities. Idaho National Laboratory, Aug. 2022. [cited May 03, 2023]. [Online]. Available from: https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_63335.pdf.
  • Quintus Technologies. Cold Isostatic Pressing (CIP) Systems. [cited May 11, 2023]. Available from: https://quintustechnologies.com/cold-isostatic-pressing/products/cold-isostatic-presses/.
  • Sutherland AE. Sustainable Recycling of Metal Machining Swarf via Spark Plasma Sintering [master's thesis]. Colorado State University, United States; 2021.
  • Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. Sep. 2000;407(6802):361–364. doi:10.1038/35030069
  • Pope JJ, Calvert EL, Weston NS, et al. FAST-DB: a novel solid-state approach for diffusion bonding dissimilar titanium alloy powders for next generation critical components. J Mater Process Technol. Jul. 2019;269:200–207. doi:10.1016/j.jmatprotec.2019.02.011