224
Views
0
CrossRef citations to date
0
Altmetric
Manuscripts from the International Conference on Novel and Nano Materials ISNNM-2022, held in Jeju, Korea, November 14-18, 2022

Processing parameter correlations in powder bed fusion additive manufacturing for Fe–Si soft magnetic materials through design of experiments

, , , , & ORCID Icon
Pages 602-612 | Received 28 Feb 2023, Accepted 18 Jul 2023, Published online: 01 Aug 2023

References

  • Lamichhane TN, Sethuraman L, Dalagan A, et al. Additive manufacturing of soft magnets for electrical machines – a review. Mater Today Phys. 2020;15:100255. doi:10.1016/j.mtphys.2020.100255
  • Sun K, Li F, Rong C, et al. Direct energy deposition applied to soft magnetic material additive manufacturing. J Manuf Process. 2022;84:162–173. doi:10.1016/j.jmapro.2022.10.004
  • Stornelli G, Faba A, Di Schino A, et al. Properties of additively manufactured electric steel powder cores with increased Si content. Materials (Basel). 2021;14(6):1489. doi:10.3390/ma14061489
  • Shokrollahi HEJK, Janghorban K. Soft magnetic composite materials (SMCs). J Mater Process Technol. 2007;189(1–3):1–12. doi:10.1016/j.jmatprotec.2007.02.034
  • Goll D, Schuller D, Martinek G, et al. Additive manufacturing of soft magnetic materials and components. Addit Manuf. 2019;27:428–439. doi:10.1016/j.addma.2019.02.021
  • Plotkowski A, Pries J, List F, et al. Influence of scan pattern and geometry on the microstructure and soft-magnetic performance of additively manufactured Fe-Si. Addit Manuf. 2019;29:100781. doi:10.1016/j.addma.2019.100781
  • Han T, Wang Y, Shen JX. Analysis and experiment method of influence of retaining sleeve structures and materials on rotor eddy current loss in high-speed PM motors. IEEE Trans Ind Appl. 2020;56(5):4889–4895. doi:10.1109/TIA.2020.3009909
  • Calvillo PR, Ros-Yanez T, Ruiz D, et al. Plane strain compression of high silicon steel. Mater Sci Technol. 2006;22(9):1105–1111. doi:10.1179/174328406X114207
  • Takada Y, Abe M, Masuda S, et al. Commercial scale production of Fe-6.5 wt.% Si sheet and its magnetic properties. J Appl Phys. 1988;64(10):5367–5369. doi:10.1063/1.342373
  • Bahl S, Mishra S, Yazar KU, et al. Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel. Addit Manuf. 2019;28:65–77. doi:10.1016/j.addma.2019.04.016
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17(1):63–71. doi:10.1038/nmat5021
  • Garibaldi M, Ashcroft I, Simonelli M, et al. Metallurgy of high-silicon steel parts produced using Selective Laser Melting. Acta Mater. 2016;110:207–216. doi:10.1016/j.actamat.2016.03.037
  • Garibaldi M, Ashcroft I, Hillier N, et al. Relationship between laser energy input, microstructures and magnetic properties of selective laser melted Fe-6.9% wt Si soft magnets. Mater Charact. 2018;143:144–151. doi:10.1016/j.matchar.2018.01.016
  • Gao S, Yan X, Chang C, et al. Effect of laser energy density on surface morphology, microstructure, and magnetic properties of selective laser melted Fe-3wt.% Si alloys. J. Mater Eng Perform. 2021;30:5020–5030. doi:10.1007/s11665-022-06818-0
  • Alleg S, Drablia R, Fenineche N. Effect of the laser scan rate on the microstructure, magnetic properties, and microhardness of selective laser-melted FeSiB. J Supercond Nov Magn. 2018;31:3565–3577. doi:10.1007/s10948-018-4621-z
  • Gwak M, Park JY, Jeong SG, et al. Optimization of Laser-Powder Bed Fusion Processed Fe–4.5 Si Alloy via Response Surface Methodology. Steel Res Int. 2023;94(2):2200155. doi:10.1002/srin.202200155
  • Vebber MC, da Silva Crespo J, Giovanela M. Self-assembled thin films of PAA/PAH/TiO2 for the photooxidation of ibuprofen. Part I: optimization of photoactivity using design of experiments and surface response methodology. Chem Eng J. 2019;360:1447–1458. doi:10.1016/j.cej.2018.10.189
  • Román-Ramírez LA, Marco J. Design of experiments applied to lithium-ion batteries: a literature review. Appl Energy. 2022;320:119305. doi:10.1016/j.apenergy.2022.119305
  • Carter LN, Essa K, Attallah MM. Optimisation of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyp J. 2015;21(4):423–432. doi:10.1108/RPJ-06-2013-0063
  • Moradi M, Hasani A, Pourmand Z, et al. Direct laser metal deposition additive manufacturing of Inconel 718 superalloy: statistical modelling and optimization by design of experiments. Opt Laser Technol. 2021;144:107380. doi:10.1016/j.optlastec.2021.107380
  • Bosio F, Aversa A, Lorusso M, et al. A time-saving and cost-effective method to process alloys by laser powder bed fusion. Mater Des. 2019;181:107949. doi:10.1016/j.matdes.2019.107949
  • Chang SH, Teng TT, Ismail N. Screening of factors influencing Cu (II) extraction by soybean oil-based organic solvents using fractional factorial design. J Environ Manage. 2011;92(10):2580–2585. doi:10.1016/j.jenvman.2011.05.025
  • de Araujo AP, Kiminami CS, Uhlenwinkel V, et al. Processability of recycled quasicrystalline Al-Fe-Cr-Ti composites by selective laser melting-A statistical approach. Scr Mater. 2022;22:101377. doi:10.1016/j.mtla.2022.101377
  • Bayat M, Thanki A, Mohanty S, et al. Keyhole-induced porosities in laser-based powder bed fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation. Addit Manuf. 2019;30:100835. doi:10.1016/j.addma.2019.100835
  • Aboulkhair NT, Everitt NM, Ashcroft I. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf. 2014;1:77–86. doi:10.1016/j.addma.2014.08.001
  • Xiao R, Zhang X. Problems and issues in laser beam welding of aluminium–lithium alloys. J Manuf Process. 2014;16(2):166–175. doi:10.1016/j.jmapro.2013.10.005
  • Jadhav SD, Dadbakhsh S, Goossens L, et al. Influence of selective laser melting process parameters on texture evolution in pure copper. J Mater Process Technol. 2019;270:47–58. doi:10.1016/j.jmatprotec.2019.02.022
  • Dai J, Wang YG, Miao XF, et al. Atomic-scale mechanisms of annealing-induced coercivity modification in metallic glass. J Mater Sci. 2016;51:8655–8662. doi:10.1007/s10853-016-0125-z
  • Zhang X, Zhao Q, Cai Z, et al. Effects of magnetic field on the residual stress and structural defects of Ti-6Al-4V. Metals (Basel). 2020;10(1):141. doi:10.3390/met10010141
  • Hou Y, Li B, Chen J, et al. Electromagnetic wave absorption properties of core double-shell structured α-Fe(Si)@Fe3O4@SiO2 composites. Appl Surf Sci. 2023;615:156345. doi:10.1016/j.apsusc.2023.156345
  • Jian X, Li J, Han B, et al. Corroded Fe79Si9B13 amorphous alloy as electrocatalyst for oxygen evolution reaction of water splitting. J Non-Cryst Solids. 2023;603:122117. doi:10.1016/j.jnoncrysol.2022.122117
  • Lu X, Fang F, Zhang YX, et al. Microstructure and magnetic properties of strip-cast grain-oriented 4.5% Si steel under isochronal and isothermal secondary annealing. J Mater Sci. 2018;53:2928–2941. doi:10.1007/s10853-017-1707-0
  • Wang B, Li G, Wang Y, et al. Characterization of the Fe-6.5 wt-% Si strip with rapid cooling coupling deep supercooled solidification. ACS Omega. 2021;6(39):25412–25420. doi:10.1021/acsomega.1c03367
  • Li R, Shen Q, Zhang L, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J Magn Magn Mater. 2004;281(2-3):135–139. doi:10.1016/j.jmmm.2004.04.098
  • Fan XA, Wu ZY, Li GQ, et al. High resistivity and low core loss of intergranular insulated Fe-6.5wt-%Si/SiO2 composite compacts. Mater Des. 2016;89(5):1251–1258. doi:10.1016/j.matdes.2015.10.087

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.