97
Views
1
CrossRef citations to date
0
Altmetric
Manuscripts from the International Conference on Novel and Nano Materials ISNNM-2022, held in Jeju, Korea, November 14-18, 2022

Oxidative and abrasive wear of multiphase AlSi0.75TiMnFeCux (X = 0, 0.25, 0.5) high entropy alloy under non-lubricating reciprocating motion

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 623-634 | Received 02 Mar 2023, Accepted 19 Jul 2023, Published online: 27 Jul 2023

References

  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218. https://doi.org/10.1016/j.msea.2003.10.257.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. https://doi.org/10.1002/adem.200300567.
  • Li Z, Zhao S, Ritchie RO, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci. 2019;102:296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003.
  • Senkov O, Miracle D, Chaput K, et al. Development and exploration of refractory high entropy alloys—A review. J Mater Res. 2018;33:3092–3128. https://doi.org/10.1557/jmr.2018.153.
  • Soni V, Senkov ON, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy. Sci Rep. 2018;8:8816), https://doi.org/10.1038/s41598-018-27144-3.
  • Cai Z, Cui X, Jin G, et al. Microstructure and thermal stability of a Ni-Cr-Co-Ti-V-Al high-entropy alloy coating by laser surface alloying. Met Mater Int. 2017;23:1012–1018. https://doi.org/10.1007/s12540-017-6583-2.
  • Nair RB, Perumal G, McDonald A. Effect of microstructure on wear and corrosion performance of thermally sprayed AlCoCrFeMo high-entropy alloy coatings. Adv Eng Mater. 2022;2:2101713), https://doi.org/10.1002/adem.202101713.
  • Stepanov ND, Shaysultanov DG, Tikhonovsky MA, et al. Structure and high temperature mechanical properties of novel non-equiatomic Fe-(Co, Mn)-Cr-Ni-Al-(Ti) high entropy alloys. Intermetallics. 2018;102:140–151. https://doi.org/10.1016/j.intermet.2018.09.010.
  • Tsai MH, Yeh JW. High-entropy alloys: a critical review. Mater Res Lett. 2014;2:107–123. https://doi.org/10.1080/21663831.2014.912690.
  • Gao MC, Zhang B, Yang S. Senary refractory high-entropy alloy HfNbTaTiVZr. Metal Mater Trans A. 2016;47:3333–3345. https://doi.org/10.1007/s11661-015-3105-z.
  • Sharma A, Lee H, Ahn B. Tailoring compressive strength and absorption energy of lightweight multi-phase AlCuSiFeX (X = Cr, Mn, Zn, Sn) high-entropy alloys processed via powder metallurgy. Materials (Basel). 2021;14(17):4945), https://doi.org/10.3390/ma14174945.
  • Oh MC, Sharma A, Lee H, et al. Phase separation and mechanical behavior of AlCoCrFeNi-X (X = Cu, Mn, Ti) high entropy alloys processed via powder metallurgy. Intermetallics. 2021;139(3):107369), https://doi.org/10.1016/j.intermet.2021.107369.
  • Sharma A, Oh MC, Ahn B. Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy. Mater Sci Eng A. 2020;797:140066), https://doi.org/10.1016/j.msea.2020.140066.
  • Chae MJ, Lee H, Sharma A, et al. Effect of light (X = Mg, Si) and heavy (X = Zn) metals on the microstructural evolution and densification of AlCuFeMnTi-X high-entropy alloy processed by advanced powder metallurgy. Powder Met. 2021;64:228–234. https://doi.org/10.1080/00325899.2021.1909212.
  • Chae MJ, Sharma A, Oh MC, et al. Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy. Metall Mater Int. 2021;27:629–638. https://doi.org/10.1007/s12540-020-00823-5.
  • Oh MC, Lee H, Sharma A, et al. Controlled valence electron concentration approach to tailor the microstructure and phase stability of an entropy-enhanced AlCoCrFeNi alloy. Metal Mater Trans A. 2022;53(5):1831–1844. https://doi.org/10.1007/s11661-022-06637-x.
  • Praveen S, Murty BS, Kottada RS. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A. 2012;534:83–89. https://doi.org/10.1016/j.msea.2011.11.044.
  • Sharma A, Lee H, Ahn B. Effect of additive elements (x = Cr, Mn, Zn, Sn) on the phase evolution and thermodynamic complexity of AlCuSiFe-x high entropy alloys fabricated via powder metallurgy. Met Mater Int. 2022;28:2216–2224. https://doi.org/10.1007/s12540-021-01125-0.
  • Tong CJ, Chen YL, Yeh JW, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005;36(4):881–893. https://doi.org/10.1007/s11661-005-0283-0.
  • Zhu JM, Meng JL, Liang JL. Microstructure and mechanical properties of multi-principal component AlCoCrFeNiCux alloy. Rare Met. 2016;35(5):385–389. https://doi.org/10.1007/s12598-014-0268-5.
  • Dabrowa J, Cieslak G, Stygar M, et al. Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics. 2017;84:52–61. https://doi.org/10.1016/j.intermet.2016.12.015.
  • Stepanov N, Yurchenko NY, Shaysultanov D, et al. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater Sci Technol. 2015;31(10):1184–1193. https://doi.org/10.1179/1743284715Y.0000000032.
  • Wang Z, Wang X, Yue H, et al. Microstructure, thermodynamics and compressive properties of AlCoCrCuMn-x (x = Fe, Ti) high-entropy alloys. Mater Sci Eng A. 2015;627:391–398. https://doi.org/10.1016/j.msea.2015.01.002.
  • Qin G, Zhang Y, Chen R, et al. Microstructures and mechanical properties of (AlCoCrFeMn)100 – x Cux high-entropy alloys. Mater Sci Technol. 2019;35(13):1578–1585. https://doi.org/10.1080/02670836.2019.1629541.
  • Du W, Liu N, Peng Z, et al. The effect of Ti addition on phase selection of CoCrCu0.5FeNi high-entropy alloys. Mater Sci Technol. 2018;34(4):473–479. https://doi.org/10.1080/02670836.2017.1407554.
  • Zheng Z, Li X, Zhang C, et al. Microstructure and corrosion behaviour of FeCoNiCuSnx high entropy alloys. Mater Sci Technol. 2015;31(10):1148–1152. https://doi.org/10.1179/1743284714Y.0000000730.
  • Joseph J, Haghdadi N, Shamlaye K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear. 2019;428-429:32–44. https://doi.org/10.1016/j.wear.2019.03.002.
  • Zhang M, Zhang X, Niu M, et al. High-temperature tribological behavior of CoCrFeNiV high-entropy alloys: A parallel comparison with CoCrFeNiMn high-entropy alloys. Tribol. Int. 2022;174:107736), https://doi.org/10.1016/j.triboint.2022.107736.
  • Kumar A, Swarnakar AK, Chopkar M. Phase evolution and mechanical properties of AlCoCrFeNiSix high-entropy alloys synthesized by mechanical alloying and spark plasma sintering. J Mater Eng Perform. 2018;27:3304–3314. https://doi.org/10.1007/s11665-018-3409-4.
  • Haque MM, Sharif A. Study on wear properties of aluminium-silicon piston alloy. J Mater Proc Technol. 2001;118:69–73. https://doi.org/10.1016/S0924-0136(01)00869-X.
  • Verma A, Tarate P, Abhyankar AC, et al. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scr Mater. 2019;161:28–31. https://doi.org/10.1016/j.scriptamat.2018.10.007.
  • Huang L, Wang X, Huang B, et al. Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys. Intermetallics. 2022;14:107397), https://doi.org/10.1016/j.intermet.2021.107397.
  • Cai Y, Chen Y, Luo Z, et al. Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology. Mater Des. 2017;133:91–108. https://doi.org/10.1016/j.matdes.2017.07.045.
  • Hsu YJ, Chiang WC, Wu JK. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys. 2005;92:112–117. https://doi.org/10.1016/j.matchemphys.2005.01.001.
  • Sharma A, Lee H, Ahn B. Microstructure and properties of in-situ Al-Si/Al2O3 composites prepared by displacement reaction. Powder Met. 2021;64(3):192–197. https://doi.org/10.1080/00325899.2021.1899453.
  • Sharma A, Lee H, Ahn B. Microstructure and reactivity of cryomilled Al-Ni energetic material with nanoscale lamellar structure. J Mater Sci. 2022;57(38):17957–17966. https://doi.org/10.1007/s10853-022-07429-9.
  • Lee H, Sharma A, Ahn B. Microstructural evolution and compressive properties of nanocrystalline Ti-Fe alloy fabricated via cryomilling and spark plasma sintering. J Mater Sci. 2022;57(38):18089–18100. https://doi.org/10.1007/s10853-022-07509-w.
  • Park C, Lee H, Lee N, et al. Upcycling of abandoned banner via thermocatalytic process over a MnFeCoNiCu high-entropy alloy catalyst. J Hazard Mater. 2022;440:129825), https://doi.org/10.1016/j.jhazmat.2022.129825.
  • Kim M, Sharma A, Chae MJ, et al. Microstructural evolution of AlCuFeMnTi-0.75Si high entropy alloy processed by mechanical alloying and spark plasma sintering. Arch Metall Mater. 2021;66(2):703–707. https://doi.org/10.24425/amm.2021.136365.
  • Rao SG, Shu R, Boyd R, et al. The effects of copper addition on phase composition in (CrFeCo)1-yNy multicomponent thin films. Appl Surf Sci. 2022;572:151315), https://doi.org/10.1016/j.apsusc.2021.151315.
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505), https://doi.org/10.1063/1.3587228.
  • Ortiz EL, Osório WR, Bortolozo AD, et al. Alternative liquid-assisted sintering of Al/Cu composites using selected powders of As-cast Al-Zn alloy. Metals. 2022;12(6):962), https://doi.org/10.3390/met12060962.
  • Dong Y, Lu Y, Li J, et al. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics. 2014;52:105–109. https://doi.org/10.1016/j.intermet.2014.04.001.
  • Cheng J, Yang J, Ma J, et al. The tribological behavior of a Ti-46Al-2Cr-2Nb alloy under liquid paraffin lubrication. Tribol. Lett. 2012;46:233–241. https://doi.org/10.1007/s11249-012-9942-7.
  • Gåård A, Krakhmalev P, Bergstrom J, et al. Experimental study of the relationship between temperature and adhesive forces for low-alloyed steel, stainless steel, and titanium using atomic force microscopy in ultrahigh vacuum. J Appl Phys. 2008;103:193), https://doi.org/10.1063/1.2938844.
  • Chen M, Lan L, Shi X, et al. The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ-phase precipitation at elevated temperature. J Alloy Compd. 2019;777:180–189. https://doi.org/10.1016/j.jallcom.2018.10.393.
  • Wang Y, Yang Y, Yang H, et al. Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J Alloy Compd. 2017;725:365–372. https://doi.org/10.1016/j.jallcom.2017.07.132.
  • Chen M, Shi XH, Yang H, et al. Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J Mater Res. 2018;33(19):3310–3320. https://doi.org/10.1557/jmr.2018.279.
  • Mukanov S, Loginov P, Fedotov A, et al. The effect of copper on the microstructure, wear and corrosion resistance of CoCrCuFeNi high-entropy alloys manufactured by powder metallurgy. Materials. 2023;16:1178), https://doi.org/10.3390/ma16031178.
  • Li R, Yu W, Zhang Y, et al. Effect of phase proportion on wear behavior of Al–Cr–Fe–Ni dual-phase high entropy alloys. Metallogr Micro Anal. 2021;10:106–115. https://doi.org/10.1007/s13632-020-00709-3.
  • Duan HT, Tu JS, Du SM, et al. Tribological properties of Ti40Zr25Ni8Cu9Be18 bulk metallic glasses under different conditions. Mater Des. 2011;32:4573–4579. https://doi.org/10.1016/j.matdes.2011.04.018.
  • Tariq NH, Hasan BA, Akhter JI, et al. Mechanical and tribological properties of Zr-Al-Ni-Cu bulk metallic glasses. J Alloy Compd. 2009;469:179–185. https://doi.org/10.1016/j.jallcom.2008.02.002.
  • Wang QL, Huang CH, Zhang L. Microstructure and tribological properties of plasma nitriding cast CoCrMo alloy. J Mater Sci Technol. 2012;28:60–66. https://doi.org/10.1016/S1005-0302(12)60024-3.
  • Lin CM, Juan CC, Chang CH, et al. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J Alloy Compd. 2015;624:100–107. https://doi.org/10.1016/j.jallcom.2014.11.064.
  • Yang H, Liu Y, Zhang T, et al. Dry sliding tribological properties of a dendrite-reinforced Zr-based bulk metallic glass matrix composite. J Mater Sci Technol. 2014;30:576–583. https://doi.org/10.1016/j.jmst.2014.05.004.
  • Wang WR, Wang WL, Wang SC, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44–51. https://doi.org/10.1016/j.intermet.2012.03.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.