153
Views
0
CrossRef citations to date
0
Altmetric
Manuscripts from the International Conference on Novel and Nano Materials ISNNM-2022, held in Jeju, Korea, November 14-18, 2022

Advancement of thermoelectric performances through the dispersion of expanded graphene on p-type BiSbTe alloys

, , , , , & show all
Pages 722-730 | Received 28 Feb 2023, Accepted 19 Aug 2023, Published online: 08 Sep 2023

References

  • Terry TM. Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res. 2011;41:433–448. doi:10.1146/annurev-matsci-062910-100453
  • Chao H, Zhen L, Shixue D. Recent progress in thermoelectric materials. Chin Sci Bull. 2014;59:2073–2091. doi:10.1007/s11434-014-0237-2
  • Hilaal A, Seeram R. Review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy. 2013;2:190–212. doi:10.1016/j.nanoen.2012.10.005
  • Jeannine RS, Jeremy MH, Song J. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J Mater Chem 2011;21:4037–4055. doi:10.1039/C0JM02755C
  • Zhi-Gang C, Guang H, Lei Y, et al. Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci: Mater Int. 2012;22(6):535–549. doi:10.1016/j.pnsc.2012.11.011
  • Minnich AJ, Dresselhaus MS, Ren ZF, et al. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci. 2009;2:466–479. doi:10.1039/b822664b
  • Li-Dong Z, Vinayak PD, Mercouri GK. The panoscopic approach to high performance thermoelectrics. Energy Environ Sci. 2014;7:251–268. doi:10.1039/C3EE43099E
  • Farheen FJ, Zubair A, Farid T, et al. Optimum sintering method and temperature for cold compact Bismuth Telluride pellets for thermoelectric applications. J Alloys Compds. 2021;877:160256. doi:10.1016/j.jallcom.2021.160256
  • Ian TW, Thomas CC, Francesco R, et al. Thermoelectric properties of Bismuth Telluride. Adv Electron Mater. 2019;5:1800904. doi:10.1002/aelm.201800904
  • Min H, Zhi-Gang C, Jin Z. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chinese Phy B. 2018;27:048403. doi:10.1088/1674-1056/27/4/048403
  • Li-Peng H, Tie-Jun Z, Ya-Guang W, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 2014;6:e88. doi:10.1038/am.2013.86
  • Kim SI, Lee KH, Mun HA, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348:109–114. doi:10.1126/science.aaa4166
  • Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597–602. doi:10.1038/35098012
  • Ian TW, Jann AG, Vinayak PD, et al. Thermoelectric transport enhancement of Te-rich bismuth antimony telluride (Bi0.5Sb1.5Te3 + x) through controlled porosity. J Materiomics. 2020;6:532–544. doi:10.1016/j.jmat.2020.04.001
  • Wenjie X, Xinfeng T, Yonggao Y, et al. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett. 2009;94:102111. doi:10.1063/1.3097026
  • Suk-min Y, Cheenepalli N, Dong-won S, et al. Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying. J Korean Powder Metall Inst. 2017;24:357–363. doi:10.4150/KPMI.2017.24.5.357
  • Peng Z, Fengrong Y, Binhao W, et al. Porous bismuth antimony telluride alloys with excellent thermoelectric and mechanical properties. J Mater Chem A. 2021;9:4990–4999. doi:10.1039/D0TA09795K
  • Peyala D, Hyo-Seob K, Chul-Hee L, et al. Influence of powder size on thermoelectric properties of p-type 25%Bi2Te3-75%Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. J Alloys Compds. 2016;686:1–8. doi:10.1016/j.jallcom.2016.05.340
  • Babu M, Hyo-Seob K, Kap-Ho L, et al. Large scale production of high efficient and robust p-type Bi-Sb-Te based thermoelectric materials by powder metallurgy. Mater Design. 2016;112:485–494. doi:10.1016/j.matdes.2016.09.089
  • Babu M, Pathan S, Kyoung-Tae P, et al. Development of high-performance thermoelectric materials by microstructure control of P-type BiSbTe based alloys fabricated by water atomization. Materials (Basel). 2021;14:4870. doi:10.3390/ma14174870
  • Peng-an Z, Jia L, Peng Z, et al. Graphene-based thermoelectrics. ACS Appl Energy Mater. 2020;3:2224–2239. doi:10.1021/acsaem.9b02187
  • Eric P, Vikas V, Ajit KR. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012;37:1273–1281. doi:10.1557/mrs.2012.203
  • Daewoo S, Sanghoon L, Hyeona M, et al. Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy. 2015;13:67–76. doi:10.1016/j.nanoen.2015.02.001
  • Jingdu D, Wei L, Han L, et al. In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method. J Mater Chem A. 2013;1:12503. doi:10.1039/c3ta12494k
  • Bhardwaj A, Shukla AK, Dhakate SR, et al. Graphene boosts thermoelectric performance of a Zintl phase compound. RSC Adv. 2015;5:11058–11070. doi:10.1039/C4RA15456H
  • Young MC, Kyung TK, Gi SL, et al. The role of edge-oxidized graphene to improve the thermopower of p-type bismuth telluride-based thick films. Appl Surf Sci. 2019;476:533–538. doi:10.1016/j.apsusc.2019.01.026
  • Kyung TK, Taesik M, Dong WK. Investigation on the thermoelectric properties of Bismuth Telluride Matrix composites by addition of graphene oxide powders. J Korean Powder Metall Inst. 2016;23(4):263–269. doi:10.4150/KPMI.2016.23.4.263
  • Pathan S, Babu M, Sung HS, et al. Investigation of graphene dispersion on thermoelectric, magnetic, and mechanical properties of p-type Bi0.5Sb1.5Te3 alloys. Mater Chem Phy. 2021;266:124512. doi:10.1016/j.matchemphys.2021.124512
  • Li F, Huang X, Sun Z, et al. Enhanced thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering. J Alloys Compds. 2011;509:4769–4773. doi:10.1016/j.jallcom.2011.01.155
  • Sharief P, Madavali B, Sohn Y, et al. Reduction of thermal conductivity through complex microstructure by dispersion of carbon nanofiber in p-type Bi0.5Sb1.5Te3 alloys. Arch Metall Mater. 2021;66:803–808.
  • Quanquan H, Rossitza S, Sam LE. Characterisation and milling time optimisation of nanocrystalline aluminium powder for selective laser melting. Int J Adv Manuf Techno. 2017;88:1429–1438. doi:10.1007/s00170-016-8866-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.