191
Views
5
CrossRef citations to date
0
Altmetric
Regular Articles

An estimate of the global budget and distribution of ethanol using a global 3-D atmospheric chemistry transport model STOCHEM-CRI

, , , , , & show all

References

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J. & Troe, J. 2006. Evaluated kinetic and photochemical data for atmospheric chemistry: volume II – gas phase reactions of organic species. Atmospheric Chemistry and Physics 6: 3625–4055. doi: 10.5194/acp-6-3625-2006
  • Avery Jr, G.B., Foley, L., Carroll, A.L., Roebuck Jr, J.A., Guy, A., Mead, R.N., Kieber, R.J., Willey, J.D., Skrabal, S.A., Felix, J.D., Mullaugh, K.M. & Helms, J.R. 2016. Surface waters as a sink and source of atmospheric gas phase ethanol. Chemosphere 144: 360–365. doi: 10.1016/j.chemosphere.2015.08.080
  • Balat, M. & Balat, H. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy 86: 2273–2282. doi: 10.1016/j.apenergy.2009.03.015
  • Blando, J.D. & Turpin, B.J. 2000. Secondary organic aerosol formation in cloud and fog droplets: A literature evaluation of plausibility. Atmospheric Environment 34: 1623–1632. doi: 10.1016/S1352-2310(99)00392-1
  • Boudries, H., Bottenheim, J.W., Guimbaud, C., Grannas, A.M., Shepson, P.B., Houdier, S., Perrier, S. & Dominé, F. 2002. Distribution and trends of oxygenated hydrocarbons in the high Arctic derived from measurements in the atmospheric boundary layer and interstitial snow air during the ALERT2000 field campaign. Atmospheric Environment 36: 2573–2583. doi: 10.1016/S1352-2310(02)00122-X
  • Collins, W.J., Stevenson, D.S., Johnson, C.E. & Derwent, R.G., 1997. Tropospheric ozone in a Global-Scale Three-Dimensional Lagrangian Model and its response to NOx emission controls. Journal of Atmospheric Chemistry 26: 223–274. doi: 10.1023/A:1005836531979
  • Derwent, R.G., Stevenson, D.S., Doherty, R.M., Collins, W.J. & Sanderson, M.G. 2008. How is surface ozone in Europe linked to Asian and North American NOx emissions? Atmospheric Environment 42: 7412–7422. doi: 10.1016/j.atmosenv.2008.06.037
  • Dunmore, R.E., Whalley, L.K., Sherwen, T., Evans, M.J., Heard, D.E., Hopkins, J.R., Lee, J.D., Lewis, A.C., Lidster, R.T., Rickard, A.R. & Hamilton, J.F. 2016. Atmospheric ethanol in London and the potential impacts of future fuel formulations. Faraday Discussions 189: 105–120. doi: 10.1039/C5FD00190K
  • Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A.B., Hewitt, C.N., Lamb, B., Liu, S., Trainer, M., Westberg, H. & Zimmerman, P. 1992. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochemical Cycles 6: 389–430. doi: 10.1029/92GB02125
  • Fischer, E.V., Jacob, D.J., Yantosca, R.M., Sulprizio, M.P., Millet, D.B., Mao, J., Paulot, F., Singh, H.B., Roiger, A., Ries, L., Talbot, R.W., Dzepina, K. & Deolal, S.P. 2014. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmospheric Chemistry and Physics 14: 2679–2698. doi: 10.5194/acp-14-2679-2014
  • Garzón, J.P., Huertas, J.I., Magaña, M., Huertas, M.E., Cárdenas, B., Watanabe, T., Maeda, T., Wakamatsu, S. & Blanco, S. 2015. Volatile organic compounds in the atmosphere of Mexico City. Atmospheric Environment 119: 415–429. doi: 10.1016/j.atmosenv.2015.08.014
  • Gilman, J.B., Kuster, W.C., Goldan, P.D., Hemdon, S.C., Zahniser, M.S., Tucker, S.C., Brewer, W.A., Lerner, B.M., Williams, E.J., Harley, R.A., Fehsenfeld, F.C., Warneke, C. & De Gouw, J.A. 2009. Measurements of volatile organic compounds during the 2006 TexAQS/GoMACCS campaign: Industrial influences, regional characteristics, and diurnal dependencies of the OH reactivity. Journal of Geophysical Research 114: D00F06. doi: 10.1029/2008JD011525
  • Granier, C., Lamarque, J.F., Mieville, A., Muller, J.F., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, S. & Wallens, S. 2005. POET, a database of surface emissions of ozone precursors, http://accent.aero.jussieu.fr/database_table_inventories.php (accessed 5 July 2016).
  • Grosjean, E., Rasmussen, R.A. & Grosjean, D. 1998. Ambient levels of gas phase pollutants in Porto Alegre, Brazil. Atmospheric Environment 32: 3371–3379. doi: 10.1016/S1352-2310(98)00007-7
  • Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K. & Wang, X. 2012. The Model of Emissions of gases and Aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modelling biogenic emissions. Geoscientific Model Development 5: 1471–1492. doi: 10.5194/gmd-5-1471-2012
  • Jacobson, M.Z. 2007. Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Environmental Science and Technology 41: 4150–4157. doi: 10.1021/es062085v
  • Jenkin, M.E., Watson, L.A., Utembe, S.R. & Shallcross, D.E. 2008. A Common Representative Intermediate (CRI) mechanism for VOC degradation. Part-1: gas phase mechanism development. Atmospheric Environment 42: 7185–7195. doi: 10.1016/j.atmosenv.2008.07.028
  • José, G. 2013. Sugarcane Ethanol: Strategies to a successful program in Brazil. In Lee, J.W (Ed.), Advanced Biofuels and Bioproducts. New York, Springer-Verlag, pp. 13–20.
  • Kirstine, W.V. & Galbally, I.E. 2012. The global atmospheric budget of ethanol revisited. Atmospheric Chemistry and Physics 12: 545–555. doi: 10.5194/acp-12-545-2012
  • Konecky, B., Russell, J., Huang, Y., Vuille, M., Cohen, L. & Street-Perrott, F.A. 2014. Impact of monsoons, temperature and CO2 on the rainfall and ecosystems of Mt. Kenya during the Common Era. Palaeogeography Palaeoclimatology Palaeoecology 396: 17–25. doi: 10.1016/j.palaeo.2013.12.037
  • Legreid, G., Lööv, J.B., Staehelin, J., Hueglin, C., Hill, M., Buchmann, B., Prevot A.S.H. & Reimann, S. 2007. Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zürich (Europe): seasonal variation and source allocation. Atmospheric Environment 41: 8409–8423. doi: 10.1016/j.atmosenv.2007.07.026
  • Legreid, G., Folini, D., Staehelin, J., Lööv, J.B., Steinbacher, M. & Reimann, S. 2008. Measurements of organic trace gases including oxygenated volatile organic compounds at the alpine site Jungfraujoch (Switzerland): seasonal variation and source allocation. Journal of Geophysical Research 113: D05307. doi: 10.1029/2007JD008653
  • Leibrock, E. & Slemr, J. 1997. Method for measurement of volatile oxygenated hydrocarbons in ambient air. Atmospheric Environment 31: 3329–3339. doi: 10.1016/S1352-2310(97)00155-6
  • Millet, D.B., Goldstein, A.H., Allan, J.D., Bates, T.S., Boudries, H., Bower, K.N., Coe, H., Ma, Y., Mckay, M., Quinn, P.K., Sullivan, A., Weber, R.J. & Worsnop, D.R. 2004. Volatile organic compound measurements at Trinidad Head, California, during ITCT 2K2: Analysis of sources, atmospheric composition, and aerosol residence times. Journal of Geophysical Research 109: D23S16. doi: 10.1029/2003JD004026
  • Millet, D.B., Donahue, N.M., Pandis, S.N., Polidori, A., Stanier, C.O., Turpin, B.J. & Goldstein, A.H. 2005. Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions. Journal of Geophysical Research 110: D07S07. doi: 10.1029/2004JD004601
  • Millet, D.B., Goldstein, A.H., Holzinger, R., Williams, B.J., Allan, J.D., Jimenez, J.L., Worsnop, D.R., Roberts, J.M., White, A.B., Hudman, R.C., Bertschi, I.T. & Stohl, A. 2006. Chemical characteristics of North American surface layer outflow: insights from Chebogue point, Nova Scotia. Journal of Geophysical Research 111: D23S53. doi: 10.1029/2005JD006853
  • Millet, D.B., Guenther, A., Siegel, D.A., Nelson, N.B., Singh, H.B., De Gouw, J.A., Warneke, C., Williams, J., Eardekens, G., Sinha, V., Karl, T., Flocke, F., Apel, E., Riemer, D.D., Palmer, P.I. & Barkley, M. 2010. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmospheric Chemistry and Physics 10: 3405–3425. doi: 10.5194/acp-10-3405-2010
  • Millet, D.B., Apel, E., Henze, D.K., Hill, J. Marshall, J.D., Singh, H.B. & Tessum, C.W. 2012. Natural and anthropogenic ethanol sources in North America and potential atmospheric impacts of ethanol fuel use. Environmental Science and Technology 46: 8484–8492. doi: 10.1021/es300162u
  • Murphy, J.G., Day, D.A., Cleary, P.A., Wooldridge, P.J., Millet, D.B., Goldstein, A.H. & Cohen, R.C. 2007. The weekend effect within and downwind of Sacramento-Part 1: observations of ozone, nitrogen oxides, and VOC reactivity. Atmospheric Chemistry and Physics 7: 5327–5339. doi: 10.5194/acp-7-5327-2007
  • Naik, V., Fiore, A.M., Horowitz, L.W., Singh, H.B., Wiedinmyer, C., Guenther, A., De Gouw, J.A., Millet, D.B., Goldan, P.D., Kuster, W.C. & Goldstein, A. 2010. Observational constraints on the global atmospheric budget of ethanol. Atmospheric Chemistry and Physics 10: 5361–5370. doi: 10.5194/acp-10-5361-2010
  • Nguyen, H.T-H., Takenaka, N., Bandow, H., Maeda, Y., De Oliva, S.T., Botelho, M.M.F. & Tavares, T.M. 2001. Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmospheric Environment 35: 3075–3083. doi: 10.1016/S1352-2310(01)00136-4
  • Riemer, D., Pos, W., Milne, P., Farmer, C., Zika, R., Apel, E., Olszyna, K., Kliendienst, T., Lonneman, W., Bertman, S., Shepson, P. & Starn, T. 1998. Observations of nonmethane hydrocarbons and oxygenated volatile organic compounds at a rural site in the southeastern United States. Journal of Geophysical Research 103: 28111–28128. doi: 10.1029/98JD02677
  • Rubin, J.I., Kean, A.J., Harley, R.A., Millet, D.B. & Goldstein, A.H. 2006. Temperature dependence of volatile organic compound evaporative emissions from motor vehicles. Journal of Geophysical Research 111: D03305. doi: 10.1029/2005JD006458
  • Sander, R. 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics 15: 4399–4981. doi: 10.5194/acp-15-4399-2015
  • Singh, H.B., Salas, L., Chatfield, R., Czech, E., Fried, A., Walega, J., Evans, M., Field, B., Jacob, D., Blake, D., Heikes, B., Talbot, R., Sachse, G., Crawford, J., Avery, M., Sandholm, S. & Fuelberg, H. 2004. Analysis of the atmospheric distribution, sources and sinks of oxygenated volatile organic chemicals based on measurements of the Pacific during TRACE-P. Journal of Geophysical Research 109: D15S07.
  • Snider, J.R. & Dawson, G.A. 1985. Tropospheric light alcohols, carbonyls and acetonitrile: concentrations in the southwestern United States and Henry’s law data. Journal of Geophysical Research 90: 3797–3805. doi: 10.1029/JD090iD02p03797
  • Stohl, A., Forster, C., Huntrieser, H., Mannstein, H., Mcmillan, W.W., Petzold, A., Schlager, H. & Weinzierl, B. 2007. Aircraft measurements over Europe of an air pollution plume from Southeast Asia-aerosol and chemical characterization. Atmospheric Chemistry and Physics 7: 913–937. doi: 10.5194/acp-7-913-2007
  • Suarez-Bertoa, R., Zardini, A.A., Keuken, H. & Astorga, C. 2015. Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light duty Test Cycle (WLTC). Fuel 143: 173–182. doi: 10.1016/j.fuel.2014.10.076
  • Sundvor, I. & López-Aparicio, S. 2014. Impact of bioethanol fuel implementation in transport based on modelled acetaldehyde concentration in the urban environment. Science of the Total Environment 496: 100–106. doi: 10.1016/j.scitotenv.2014.07.017
  • Utembe, S.R., Cooke, M.C., Archibald, A.T., Jenkin, M.E., Derwent, R.G. & Shallcross, D.E. 2010. Using a reduced Common Representative Intermediates (CRI v2-R5) mechanism to simulate tropospheric ozone in a 3-D Lagrangian chemistry transport model. Atmospheric Environment 13: 1609–1622. doi: 10.1016/j.atmosenv.2010.01.044
  • Walsh, R.C. 2010. High frequency observations and analysis of OVOCs using Gas Chromatography-Mass Spectrometry. Unpublished PhD thesis, University of Bristol, UK.
  • Warneke C., Kato, S., De Gouw, J.A., Goldan, P.D., Kuster, W.C., Shao, M., Lovejoy, E.R., Fall, R. & Fehsenfeld, F.C. 2005. Online volatile organic compound measurements using a newly developed proton-transfer ion-trap mass spectrometry instrument during New England Air Quality Study-Intercontinental Transport and Chemical Transformation, 2004. Performance, intercomparison, and compound identification. Environmental Science and Technology 39: 5390–5397. doi: 10.1021/es050602o
  • Watson, L.A., Shallcross, D.E., Utembe, S.R. & Jenkin, M.E. 2008. A Common Representative Intermediate (CRI) mechanism for VOC degradation. Part 2: gas phase mechanism reduction. Atmospheric Environment 42: 7196–7204. doi: 10.1016/j.atmosenv.2008.07.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.