164
Views
1
CrossRef citations to date
0
Altmetric
Regular Articles

Performance evaluation of pansharpening Sentinel 2A imagery for informal settlement identification by spectral-textural features

, &

References

  • Alcaras, E., Parente, C. & Vallario, A. 2021. Automation of pan-sharpening methods for Pléiades images using GIS basic functions. Remote Sensing 13 (8): 1550. doi:10.3390/rs13081550
  • Alparone, L., et al. 2007. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing 45 (10): 3012–3021. doi:10.1109/TGRS.2007.904923
  • Amro, I., et al. 2011. A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP Journal on Advances in Signal Processing 1: 1–22.
  • Ansari, R.A. & Buddhiraju, K.M. 2019. Textural segmentation of remotely sensed images using multiresolution analysis for slum area identification. European Journal of Remote Sensing 52 (S2): 74–88. doi:10.1080/22797254.2019.1565419
  • Borana, S.L., et al. 2019. Pan-sharpening of Landsat-8 using synthetic sentinel-2 PAN data. Esri India User Conference, August 28-29, 2019.
  • Che, X., et al. 2015. Downscaling MODIS surface reflectance to improve water body extraction. Advances in Meteorology, 1–13. doi:10.1155/2015/424291
  • Choi, M. 2006. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Transactions on Geoscience and Remote Sensing 44 (6): 1672–1682. doi:10.1109/TGRS.2006.869923
  • Dong, W., et al. 2021. Hyperspectral pansharpening via local Intensity component and local injection gain estimation., 19. IEEE Geoscience and Remote Sensing Letters, 1–5.
  • Du, Q., et al. 2007. On the performance evaluation of pan-sharpening techniques. IEEE Geoscience and Remote Sensing Letters 4 (4): 518–522. doi:10.1109/LGRS.2007.896328
  • Du, Y., et al. 2016. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing 8 (4).
  • Fallatah, A., et al. 2018. Mapping informal settlement indicators using object-oriented analysis in the Middle East. International Journal of Digital Earth 12 (7): 802–824. doi:10.1080/17538947.2018.1485753
  • Fallatah, A., et al. 2022. Combining object-based machine learning with long-term time-series analysis for informal settlement identification. Remote Sensing 14 (5): 1226. doi:10.3390/rs14051226
  • Fallatah, A., Jones, S. & Mitchell, D. 2020. Object-based random forest classification for informal settlements identification in the Middle East: Jeddah a case study. International Journal of Remote Sensing 41 (11): 4421–4445. doi:10.1080/01431161.2020.1718237
  • Feng, L., et al. 2012. Assessment of inundation changes of poyang lake using MODIS observations between 2000 and 2010. Remote Sensing of Environment 121: 80–92. doi:10.1016/j.rse.2012.01.014
  • Gangkofner, U.G., Pradhan, P.S. & Holcomb, D.W. 2007. Optimizing the high-pass filter addition technique for image fusion. Photogrammetric Engineering & Remote Sensing 73 (9): 1107–1118. doi:10.14358/PERS.73.9.1107
  • Gašparović, M. & Jogun, T. 2017. The effect of fusing Sentinel-2 bands on land-cover classification. International Journal of Remote Sensing 39 (3): 822–841. doi:10.1080/01431161.2017.1392640
  • Ge, W., et al. 2020. Assessment of the capability of Sentinel-2 imagery for iron-bearing minerals mapping: A case study in the cuprite area, Nevada. Remote Sensing 12 (18): 3028. doi:10.3390/rs12183028
  • Giannini, B.M. & Merola, P. 2012. Texture analysis for urban areas classification in high resolution satellite imagery. Appl Rem Sens J 2 (2): 65–71.
  • Gilbertson, J.K., Kemp, J. & van Niekerk, A. 2017. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Computers and Electronics in Agriculture 134: 151–159. doi:10.1016/j.compag.2016.12.006
  • Gram-Hansen, B.J., et al. 2019. Mapping informal settlements in developing countries using machine learning and low resolution multi-spectral data. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 361–368. doi:10.1145/3306618.3314253
  • Grochala, A. & Kedzierski, M. 2017. A method of panchromatic image modification for satellite imagery data fusion. Remote Sensing 9 (6), 639. doi:10.3390/rs9060639
  • Hashim, F., Dibs, H. & Sabah Jaber, H. 2022. Adopting gram-schmidt and brovey methods for estimating land use and land cover using remote sensing and satellite images. Nature Environment and Pollution Technology 21 (2): 867–881. doi:10.46488/NEPT.2022.v21i02.050
  • Hofmann, P., Taubenböck, H. & Werthmann, C. 2015. Monitoring and modelling of informal settlements-A review on recent developments and challenges. 2015 joint urban remote sensing event (JURSE), 1–4.
  • Irons, J.R., et al. 2007. The effects of spatial resolution on the classification of thematic mapper data. International Journal of Remote Sensing 6 (8): 1385–1403. doi:10.1080/01431168508948285
  • Jawak, S.D. & Luis, A.J. 2013. A Comprehensive Evaluation of pan-sharpening algorithms coupled with resampling methods for image synthesis of very high resolution remotely sensed satellite data. Advances in Remote Sensing 02 (04): 332–344. doi:10.4236/ars.2013.24036
  • Johnson, B., Tateishi, R. & Hoan, N. 2012. Satellite image pansharpening using a hybrid approach for object-based image analysis. ISPRS International Journal of Geo-Information 1 (3): 228–241. doi:10.3390/ijgi1030228
  • Kabir, S., et al. 2010. Texture analysis of IKONOS satellite imagery for urban land use and land cover classification. The imaging Science Journal 58. doi:10.1179/136821909X12581187860130
  • Kaplan, G. & Avdan, U. 2018. Sentinel-2 pan sharpening—comparative analysis. Proceedings of the 23rd International Conference on 2 (345).
  • Kavitha, J.C. & Suruliandi, A. 2018. Feature extraction using dominant local texture-color patterns (DLTCP) and classification of color images. Journal of Medical Systems 42 (11): 220. doi:10.1007/s10916-018-1067-6
  • Kohli, D., Sliuzas, R. & Stein, A. 2016. Urban slum detection using texture and spatial metrics derived from satellite imagery. Journal of Spatial Science 61 (2): 405–426. doi:10.1080/14498596.2016.1138247
  • Kösesoy, I., Tepecik, A. & Çetin, M. 2012. A comparative analysis of image fusion methods. IEEE 20th Signal Processing and Communications Applications conference (SIU)- Acomparative analysis of image fusion methods, 1–4.
  • Kraff, N.J., Wurm, M. & Taubenböck, H. 2020. The dynamics of poor urban areas - analyzing morphologic transformations across the globe using Earth observation data. Cities 107: 102905. doi:10.1016/j.cities.2020.102905
  • Kuffer, M., et al. 2016. Extraction of slum areas from VHR imagery using GLCM variance. IEEE Journal of selected topics in Applied Earth Observations And Remote Sensing 9 (5), 1830–1840. doi:10.1109/JSTARS.2016.2538563
  • Kumar, L., Sinha, P. & Taylor, S. 2014. Improving image classification in a complex wetland ecosystem through image fusion techniques. Journal of Applied Remote Sensing 8 (1): 083616. doi:10.1117/1.JRS.8.083616
  • Lanaras, C., et al. 2018. Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS Journal of Photogrammetry and Remote Sensing 146: 305–319. doi:10.1016/j.isprsjprs.2018.09.018
  • Liu, Q., Huang, C. & Li, H. 2020. Quality assessment by region and land cover of sharpening approaches applied to GF-2 imagery. Applied Sciences 10 (11): 3673. doi:10.3390/app10113673
  • Lu, D. & Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28 (5): 823–870. doi:10.1080/01431160600746456
  • Lwin, K.K. & Murayama, Y. 2013. Evaluation of land cover classification based on multispectral versus pansharpened landsat ETM+ imagery. GIScience & Remote Sensing 50 (4): 458–472. doi:10.1080/15481603.2013.814279
  • Mahabir, R., et al. 2018. A critical review of high and very high-resolution remote sensing approaches for detecting and mapping slums: Trends, challenges and emerging opportunities. Urban Science 2 (1). doi:10.3390/urbansci2010008
  • Mahmoud, A.G. 2021. Machine learning and pan-sharpening of Sentinel-2 data for land use mapping in arid regions: A case study in fayoum, Egypt. Journal of Soil Sciences and Agricultural Engineering 12 (11): 717–723. doi:10.21608/jssae.2021.205377
  • Mallick, J., et al. 2021. A novel classifier for improving wetland mapping by integrating image fusion techniques and ensemble machine learning classifiers. Ecological Informatics 65: 101426. doi:10.1016/j.ecoinf.2021.101426
  • Maurer, T. How to pan-sharpen images using the gram-schmidt pan-sharpen method – A recipe. international archives of the photogrammetry, remote sensing and spatial information sciences, Volume XL-1/W1, ISPRS Hannover Workshop 2013, 21–24 May 2013, Hannover, Germany, 2013.
  • Mboga, N., et al. 2017. Detection of informal settlements from VHR images using convolutional neural networks. Remote Sensing 9 (11): 1106. doi:10.3390/rs9111106
  • Mhangara, P., Mapurisa, W. & Mudau, N. 2020. Comparison of image fusion techniques using satellite Pour l’Observation de la Terre (SPOT) 6 satellite imagery. Applied Sciences 10 (5): 1881. doi:10.3390/app10051881
  • Mugiraneza, T., Nascetti, A. & Ban, Y. 2019. WorldView-2 data for hierarchical object-based urban land cover classification in Kigali: Integrating rule-based approach with urban density and greenness indices. Remote Sensing 11 (18): 2128. doi:10.3390/rs11182128
  • Müller, I., et al. 2020. Misperceptions of predominant slum locations? Spatial analysis of slum locations in terms of topography based on earth observation data. Remote Sensing 12 (15): 2474. doi:10.3390/rs12152474
  • Niazi, S., Mokhtarzade, M. & Saeedzadeh, F. 2015. A novel Ihs-Ga fusion method bBased on enhancement vegetated area. ISPRS - International archives of the photogrammetry. Remote Sensing and Spatial Information Sciences XL-1/W5: 543–548.
  • Nikolakopoulos, K.G. May 2008. Comparison of nine fusion techniques for very high resolution data. Photogrammetric Engineering & Remote Sensing 74 (5): 647–659. doi:10.14358/PERS.74.5.647
  • Owen, K.K. & Wong, D.W. 2013. Exploring structural differences between rural and urban informal settlements from imagery: Thebasurerosof Cobán. Geocarto International 28 (7): 562–581. doi:10.1080/10106049.2012.734533
  • Palsson, F., et al. 2012. Classification of pansharpened urban satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (1): 281–297. doi:10.1109/JSTARS.2011.2176467
  • Pandit, V.R. & Bhiwani, R.J. 2015. Image fusion in remote sensing applications: A review. International Journal of Computer Applications 120 (10).
  • Park, H., et al. 2017. Sharpening the VNIR and SWIR bands of Sentinel-2A imagery through modified selected and synthesized band schemes. Remote Sensing 9 (10): 1080. doi:10.3390/rs9101080
  • Patel, S. & Baptist, C. 2012. Editorial: Documenting by the undocumented. Environment and Urbanization 24 (1): 3–12. doi:10.1177/0956247812438364
  • Pereira, O.J.R., Melfi, A.J. & Montes, C.R. 2017. Image fusion of Sentinel-2 and CBERS-4 satellites for mapping soil cover in the Wetlands of pantanal. INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION 8 (2): 148–172. doi:10.1080/19479832.2016.1261946
  • Persello, C. & Stein, A. 2017. Deep fully convolutional networks for the detection of informal settlements in VHR images. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 14 (12), 2325–2329. doi:10.1109/LGRS.2017.2763738
  • Phiri, D., et al. 2020. Sentinel-2 data for land cover/use mapping: A review. Remote Sensing 12 (14). doi:10.3390/rs12142291
  • Prabhu, R. & Parvathavarthini, B. 2021. An enhanced approach for informal settlement extraction from optical data using morphological profile-guided filters: A case study of Madurai city. International Journal of Remote Sensing 42 (17): 6688–6705. doi:10.1080/01431161.2021.1943039
  • Prabhu, R., Parvathavarthini, B. & Alaguraja, A.R. 2021. Integration of deep convolutional neural networks and mathematical morphology-based postclassification framework for urban slum mapping. Journal of Applied Remote Sensing 15 (01). doi:10.1117/1.JRS.15.014515
  • Pushparaj, J. & Hegde, A.V. 2016. Evaluation of pan-sharpening methods for spatial and spectral quality. Applied Geomatics 9: 1–12.
  • Quan, Y., et al. 2020. A novel image fusion method of multi-spectral and SAR images for land cover classification. Remote Sensing 12 (3801).
  • Sanli, F.B., et al. 2016. Evaluation of image fusion methods using PALSAR, RADARSAT-1 and SPOT images for land use/land cover classification. Journal of the Indian Society of Remote Sensing 45 (4): 591–601. doi:10.1007/s12524-016-0625-y
  • Sarp, G. 2014. Spectral and spatial quality analysis of pan-sharpening algorithms: A case study in Istanbul. European Journal of Remote Sensing 47: 19–28. doi:10.5721/EuJRS20144702
  • Selva, M., et al. 2015. Hyper-sharpening: A first approach on SIM-GA data. IEEE Journal of selected topics in applied earth observations and remote sensing 8 (6): 3008–3024. doi:10.1109/JSTARS.2015.2440092
  • Stark, T., et al. 2020. Satellite-based mapping of urban poverty with transfer-learned slum morphologies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13: 5251–5263. doi:10.1109/JSTARS.2020.3018862
  • Taubenböck, H., Kraff, N.J. & Wurm, M. 2018. The morphology of the arrival city - A global categorization based on literature surveys and remotely sensed data. Applied Geography 92: 150–167. doi:10.1016/j.apgeog.2018.02.002
  • Tellman, B., Eakin, H. & Turner, B.L. 2022. Identifying, projecting, and evaluating informal urban expansion spatial patterns. Journal of Land Use Science 17 (1): 100–112. doi:10.1080/1747423X.2021.2020919
  • UN-Habitat. World cities report 2016: Urbanization and development—Emerging futures; world cities report; UN: Nairobi, Kenya, 2016; ISBN 978-92-1-058281-0. 2016.
  • United-Nations. The millennium development goals report 2015. Available online: http://www.un.org/millenniumgoals/ (accessed on 12 December 2016). 2015.
  • Vaiopoulos, A.D. & Karantzalos, K. 2016. Pansharpening on the Narrow Vnir and Swir spectral bands of Sentinel-2. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7: 723–730.
  • Vivone, G., et al. 2015. A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing 53 (5): 2565–2586. doi:10.1109/TGRS.2014.2361734
  • Wang, X., et al. 2018. Fine spatial resolution coastline extraction from Landsat-8 OLI imagery by integrating downscaling and pansharpening approaches. Remote Sensing Letters 9 (4): 314–323. doi:10.1080/2150704X.2017.1420928
  • Wang, J., et al. 2019. Deprivation pockets through the lens of convolutional neural networks. Remote Sensing of Environment 234: 111448. doi:10.1016/j.rse.2019.111448
  • Williams, D., et al. 2018. Informal settlements and flooding: Identifying strengths and weaknesses in local governance for water management. Water 10 (7): 871. doi:10.3390/w10070871
  • Wu, G. & Liu, Y. 2015. Downscaling surface water inundation from coarse data to fine-scale resolution: Methodology and accuracy assessment. Remote Sensing 7 (12): 15989–16003. doi:10.3390/rs71215813
  • Wurm, M., et al. 2017. Exploitation of textural and morphological image features in Sentinel-2A data for slum mapping. In 2017 Joint Urban Remote Sensing Event (JURSE). IEEE., 1–4.
  • Zhang, Y. 2004. Understanding Image Fusion. Photogrammetric Engineering & Remote Sensing 70 (6): 657–661.
  • Zhang, M., et al. 2019. Super-resolution enhancement of Sentinel-2 image for retrieving LAI and chlorophyll content of summer corn. European Journal of Agronomy 111 (125938).
  • Zheng, H., et al. 2017. Performance evaluation of downscaling Sentinel-2 imagery for land use and land cover classification by spectral-spatial features. Remote Sensing 9 (12): 1274. doi:10.3390/rs9121274
  • Zurqani, H.A., et al. 2019. Mapping urbanization trends in a forested landscape using google earth engine. Remote Sensing in Earth Systems Sciences 2 (4): 173–182. doi:10.1007/s41976-019-00020-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.