261
Views
8
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

In vivo veritas: Thrombosis mechanisms in animal models

, , , , , , , & show all
Pages 407-428 | Received 13 Jan 2006, Accepted 30 Mar 2006, Published online: 08 Jul 2009

References

  • Badimon L. Atherosclerosis and thrombosis: lessons from animal models. Thromb Haemost 2001; 86: 356–65
  • Leadley R. J., Jr., Chi L., Rebello S. S., Gagnon A. Contribution of in vivo models of thrombosis to the discovery and development of novel antithrombotic agents. J Pharmacol Toxicol Methods 2000; 43: 101–16
  • Narayanaswamy M., Wright K. C., Kandarpa K. Animal models for atherosclerosis, restenosis, and endovascular graft research. J Vasc Interv Radiol 2000; 11: 5–17
  • Burke S. E., Lefer A. M., Nicolaou K. C., Smith G. M., Smith J. B. Responsiveness of platelets and coronary arteries from different species to synthetic thromboxane and prostaglandin endoperoxide analogues. Br J Pharmacol 1983; 78: 287–92
  • Andre P., Hamaud P., Bal dit Sollier C., Drouet V., Garfinkel L. I., Uzan A., et al. Guinea pig blood: a model for the pharmacologic modulation of the GPIb/IX‐vWF axis. Thromb Res 1996; 83: 127–36
  • Strony J., Beaudoin A., Brands D., Adelman B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am J Physiol 1993; 265: H1787–96
  • Harker L. A., Kelly A. B., Hanson S. R. Experimental arterial thrombosis in nonhuman primates. Circulation 1991; 83: IV41–55
  • Todd M. E., McDevitt E., Goldsmith E. I. Blood‐clotting mechanisms of nonhuman primates. Choice of the baboon model to simulate man. J Med Primatol 1972; 1: 132–41
  • Johnson G. J., Griggs T. R., Badimon L. The utility of animal models in the preclinical study of interventions to prevent human coronary artery restenosis: analysis and recommendations. On behalf of the Subcommittee on Animal, Cellular and Molecular Models of Thrombosis and Haemostasis of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 1999; 81: 835–43
  • Fuster V., Badimon L., Badimon J. J., Ip J. H., Chesebro J. H. The porcine model for the understanding of thrombogenesis and atherogenesis. Mayo Clin Proc 1991; 66: 818–31
  • Olsen A. K., Hansen A. K., Jespersen J., Marckmann P., Bladbjerg E. M. The pig as a model in blood coagulation and fibrinolysis research. Scand J Lab Animal Sci 1999; 4: 214–24
  • Munster A. M., Olsen A. K., Bladbjerg E. M. Usefulness of human coagulation and fibrinolysis assays in domestic pigs. Comp Med 2002; 52: 39–43
  • Gross D. R. Thromboembolic phenomena and the use of the pig as an appropriate animal model for research on cardiovascular devices. Int J Artif Organs 1997; 20: 195–203
  • Hannan J. Recent advances in our knowledge of iron deficiency anaemia in piglets. Vet Rec 1971; 88: 181–90
  • Coulter D. B., Swenson M. J. Plasmatic and erythrocytic electrolytes in iron‐deficiency anemia of pigs (Sus scrofa). Comp Biochem Physiol A 1973; 44: 461–6
  • Pedersen S., Saeed I., Friis H., Michaelsen K. F. Effect of iron deficiency on Trichuris suis and Ascaris suum infections in pigs. Parasitology 2001; 122: 589–98
  • Anapol F., Herring S. W. Ontogeny of histochemical fiber types and muscle function in the masseter muscle of miniature swine. Am J Phys Anthropol 2000; 112: 595–613
  • Dorffler‐Melly J., Schwarte L. A., Ince C., Levi M. Mouse models of focal arterial and venous thrombosis. Basic Res Cardiol 2000; 95: 503–09
  • Carmeliet P., Moons L., Collen D. Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovasc Res 1998; 39: 8–33
  • Badimon L. Models to study thrombotic disorders. Thromb Haemost 1997; 78: 667–71
  • Schafer K., Kaiser K., Konstantinides S. Rosuvastatin exerts favourable effects on thrombosis and neointimal growth in a mouse model of endothelial injury. Thromb Haemost 2005; 93: 145–52
  • Festing M. F. The choice of animal model and reduction. Altern Lab Anim 2004; 32: 59–64
  • Jagadeeswaran P. Zebrafish: a tool to study hemostasis and thrombosis. Curr Opin Hematol 2005; 12: 149–52
  • Shah P. K. Pathophysiology of coronary thrombosis: role of plaque rupture and plaque erosion. Prog Cardiovasc Dis 2002; 44: 357–68
  • Libby P. Coronary artery injury and the biology of atherosclerosis: inflammation, thrombosis, and stabilization. Am J Cardiol 2000; 86: 3J–8J
  • Karnicki K., Komorowicz E., Fass D. N., Owen W. G., McBane R. D 2nd. Influence of anatomical location on arterial thrombosis. Arterioscler Thromb Vasc Biol 2002; 22: 342–7
  • Jang I. K., Gold H. K., Ziskind A. A., Leinbach R. C., Fallon J. T., Collen D. Prevention of platelet‐rich arterial thrombosis by selective thrombin inhibition. Circulation 1990; 81: 219–25
  • Gomez‐Jorge J., Becker G. J., Rodriguez M. M., Halgowich J., Leone J. The double‐tuck model: a new animal model of arterial thrombosis. J Vasc Interv Radiol 1998; 9: 633–8
  • Ritchie J. L., Hansen D. D., Johnson C., Vracko R., Auth D. C. Combined mechanical and chemical thrombolysis in an experimental animal model: evaluation by angiography and angioscopy. Am Heart J 1990; 119: 64–72
  • Folts J. An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis. Circulation 1991; 83: IV3–14
  • Folts J. D., Gallagher K., Rowe G. G. Blood flow reductions in stenosed canine coronary arteries: vasospasm or platelet aggregation?. Circulation 1982; 65: 248–55
  • Golino P., Ambrosio G., Pascucci I., Ragni M., Russolillo E., Chiariello M. Experimental carotid stenosis and endothelial injury in the rabbit: an in vivo model to study intravascular platelet aggregation. Thromb Haemost 1992; 67: 302–5
  • Roux S., Carteaux J. P., Hess P., Falivene L., Clozel J. P. Experimental carotid thrombosis in the guinea pig. Thromb Haemost 1994; 71: 252–6
  • Samama C. M., Bonnin P., Bonneau M., Pignaud G., Mazoyer E., Bailliart O., et al. Comparative arterial antithrombotic activity of clopidogrel and acetyl salicylic acid in the pig. Thromb Haemost 1992; 68: 500–5
  • Burchenal J. E., Deible C. R., Deglau T. E., Russell A. J., Beckman E. J., Wagner W. R. Polyethylene glycol diisocyanate decreases platelet deposition after balloon injury of rabbit femoral arteries. J Thromb Thrombolysis 2002; 13: 27–33
  • Chen C., Surowiec S. M., Morsy A. H., Ma M. Intraperitoneal infusion of homocysteine increases intimal hyperplasia in balloon‐injured rat carotid arteries. Atherosclerosis 2002; 160: 103–14
  • Zoldhelyi P., Chen Z. Q., Shelat H. S., McNatt J. M., Willerson J. T. Local gene transfer of tissue factor pathway inhibitor regulates intimal hyperplasia in atherosclerotic arteries. Proc Natl Acad Sci USA 2001; 98: 4078–83
  • Kageyama S., Yamamoto H., Yoshimoto R. Anti‐human von Willebrand factor monoclonal antibody AJvW‐2 prevents thrombus deposition and neointima formation after balloon injury in guinea pigs. Arterioscler Thromb Vasc Biol 2000; 20: 2303–8
  • Cottin Y., Kollum M., Chan R., Bhargava B., Vodovotz Y., Waksman R. Vascular repair after balloon overstretch injury in porcine model effects of intracoronary radiation. J Am Coll Cardiol 2000; 36: 1389–95
  • Lin P. H., Chen C., Surowiec S. M., Conklin B., Bush R. L., Chaikof E. L., et al. A porcine model of carotid artery thrombosis for thrombolytic therapy and angioplasty: application of PTFE graft‐induced stenosis. J Endovasc Ther 2000; 7: 227–35
  • Wainwright C. L., Miller A. M., Wadsworth R. M. Inflammation as a key event in the development of neointima following vascular balloon injury. Clin Exp Pharmacol Physiol 2001; 28: 891–5
  • Vodovotz Y., Waksman R., Kim W. H., Bhargava B., Chan R. C., Leon M. Effects of intracoronary radiation on thrombosis after balloon overstretch injury in the porcine model. Circulation 1999; 100: 2527–33
  • Cheung W. M., D'Andrea M. R., Andrade‐Gordon P., Damiano B. P. Altered vascular injury responses in mice deficient in protease‐activated receptor‐1. Arterioscler Thromb Vasc Biol 1999; 19: 3014–24
  • Lindner V., Fingerle J., Reidy M. A. Mouse model of arterial injury. Circ Res 1993; 73: 792–6
  • Kiss R. G., Lu H. R., Roskams T., Jang I. K., Plow E. F., Gold H. K., et al. Time course of the effects of a single bolus injection of F(ab')2 fragments of the antiplatelet GPIIb/IIIa antibody 7E3 on arterial eversion graft occlusion, platelet aggregation, and bleeding time in dogs. Arterioscler Thromb 1994; 14: 367–74
  • Gold H. K., Yasuda T., Jang I. K., Guerrero J. L., Fallon J. T., Leinbach R. C., et al. Animal models for arterial thrombolysis and prevention of reocclusion. Erythrocyte‐rich versus platelet‐rich thrombus. Circulation 1991; 83: IV26–40
  • Romson J. L., Haack D. W., Lucchesi B. R. Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti‐thrombotic agents. Thromb Res 1980; 17: 841–53
  • Baum P. K., Martin D., Abendschein D. A preparation to study simultaneous arterial and venous thrombus formation in rabbits. J Invest Surg 2001; 14: 153–60
  • Carmeliet P., Moons L., Stassen J. M., De Mol M., Bouche A., van den Oord J. J., et al. Vascular wound healing and neointima formation induced by perivascular electric injury in mice. Am J Pathol 1997; 150: 761–76
  • Bourgain R. H., Vermarien H., Andries R., Vereecke F., Jacqueloot J., Rennies J., et al. A standardized “in vivo” model for the study of experimental arterial thrombosis: description of a method. Adv Exp Med Biol 1984; 180: 635–49
  • Farrehi P. M., Ozaki C. K., Carmeliet P., Fay W. P. Regulation of arterial thrombolysis by plasminogen activator inhibitor‐ 1 in mice. Circulation 1998; 97: 1002–8
  • Weiler H., Lindner V., Kerlin B., Isermann B. H., Hendrickson S. B., Cooley B. C., et al. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol 2001; 21: 1531–7
  • Aoki T., Cox D., Senzaki K., Seki J., Tanaka A., Takasugi H., et al. Comparison of the antithrombotic effects of FK633, GPIIb/IIIa antagonist, and aspirin in a guinea pig thrombosis model. Thromb Res 1998; 89: 129–36
  • Marsh Lyle E., Lewis S. D., Lehman E. D., Gardell S. J., Motzel S. L., Lynch J. J., Jr. Assessment of thrombin inhibitor efficacy in a novel rabbit model of simultaneous arterial and venous thrombosis. Thromb Haemost 1998; 79: 656–62
  • Kurz K. D., Main B. W., Sandusky G. E. Rat model of arterial thrombosis induced by ferric chloride. Thromb Res 1990; 60: 269–80
  • Zhu Y., Tomasiak R., Fay W. P. Do clinically relevant circulating concentrations of radiographic contrast agents inhibit platelet‐dependent arterial thrombosis?. Thromb Res 2002; 105: 413–8
  • Zhu Y., Farrehi P. M., Fay W. P. Plasminogen activator inhibitor type 1 enhances neointima formation after oxidative vascular injury in atherosclerosis‐prone mice. Circulation 2001; 103: 3105–10
  • Miya Y., Kanda T., Tamura J., Sumino H., Kurabayashi M. A new murine model of coronary artery thrombosis and role of interleukin‐8 in the development of coronary thrombosis. Res Commun Mol Pathol Pharmacol 2000; 108: 108–15
  • Denis C., Methia N., Frenette P. S., Rayburn H., Ullman‐Cullere M., Hynes R. O., et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 9524–9
  • Sato M., Ohshima N. Platelet thrombus induced in vivo by filtered light and fluorescent dye in mesenteric microvessels of the rat. Thromb Res 1984; 35: 319–34
  • Laux V., Seiffge D. Platelet function in the dorsal skin fold chamber of the rat. In Vivo 1993; 7: 45–51
  • Boulnois J. L. Photophysical processes in recent medical laser developments: a review. Lasers Med Sc 1985; 1: 47–66
  • Arfors K. E., Dhall D. P., Engeset J., Hint H., Matheson N. A., Tangen O. Biolaser endothelial trauma as means of quantifying platelet activity in vivo. Nature (London) 1987; 218: 887–8
  • Giedrojc J., Krupinski K., Breddin H. K., Bielawiec M. Interaction between the sulfated lactobionic acid (LW 10082) and other antithrombotic agents in animal thrombosis model. Pol J Pharmacol 1996; 48: 317–22
  • Kovacs I. B., Tigyi‐Sebes A., Trombitas K., Gorog P. Evans blue: an ideal energy‐absorbing material to produce intravascular microinjury by HE‐NE gas laser. Microvasc Res 1975; 10: 107–24
  • Yamamoto J., Ishii I., Sasaki Y., Nagamatsu Y., Matsuda T., Ando E. Antithrombotic effect of ticlopidine on He‐Ne laser‐induced thrombus formation in rat mesenteric microvessels. Haemostasis 1992; 22: 147–52
  • Weichert W., Pauliks V., Breddin H. K. Laser‐induced thrombi in rat mesenteric vessels and antithrombotic drugs. Haemostasis 1983; 13: 61–71
  • van der Zypen E., England C., Fankhauser F., Kwasniewska S. Blood flow stasis induced by cw‐Nd:YAG laser irradiation: comparative morphology of mesenteric and choroidal vessels in pigmented rabbits. Thromb Haemost 1991; 65: 87–95
  • Rosen E. D., Raymond S., Zollman A., Noria F., Sandoval‐Cooper M., Shulman A., et al. Laser‐induced noninvasive vascular injury models in mice generate platelet‐ and coagulation‐dependent thrombi. Am J Pathol 2001; 158: 1613–22
  • Westrick R. J., Bodary P. F., Xu Z., Shen Y. C., Broze G. J., Eitzman D. T. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 2001; 103: 3044–6
  • Eitzman D. T., Westrick R. J., Xu Z., Tyson J., Ginsburg D. Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E‐deficient mice. Arterioscler Thromb Vasc Biol 2000; 20: 1831–4
  • Umemura K. A novel photochemical model of the middle cerebral artery for thrombosis research and evaluation of anti‐thrombotic agents. Nippon Yakurigaku Zasshi 1997; 109: 175–85
  • Sakariassen K. S., Aarts P. A., de Groot P. G., Houdijk W. P., Sixma J. J. A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components. J Lab Clin Med 1983; 102: 522–35
  • Andre P., Arbeille B., Drouet V., Hainaud P., Bal dit Sollier C., Caen J. P., et al. Optimal antagonism of GPIIb/IIIa favors platelet adhesion by inhibiting thrombus growth. An ex vivo capillary perfusion chamber study in the guinea pig. Arterioscler Thromb Vasc Biol 1996; 16: 56–63
  • Badimon L., Badimon J. J. Mechanisms of arterial thrombosis in nonparallel streamlines: platelet thrombi grow on the apex of stenotic severely injured vessel wall. Experimental study in the pig model. J Clin Invest 1989; 84: 1134–44
  • Sakakibara M., Goto S., Eto K., Tamura N., Isshiki T., Handa S. Application of ex vivo flow chamber system for assessment of stent thrombosis. Arterioscler Thromb Vasc Biol 2002; 22: 1360–4
  • Rukshin V., Shah P. K., Cercek B., Finkelstein A., Tsang V., Kaul S. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and eptifibatide in a canine model of stent thrombosis. Circulation 2002; 105: 1970–5
  • Rukshin V., Azarbal B., Shah P. K., Tsang V. T., Shechter M., Finkelstein A., et al. Intravenous magnesium in experimental stent thrombosis in swine. Arterioscler Thromb Vasc Biol 2001; 21: 1544–9
  • Shechter M., Merz C. N., Paul‐Labrador M. J., Kaul S. Blood glucose and platelet‐dependent thrombosis in patients with coronary artery disease. J Am Coll Cardiol 2000; 35: 300–7
  • Fuster V., Ip J. H., Badimon L., Badimon J. J., Stein B., Chesebro J. H. Importance of experimental models for the development of clinical trials on thromboatherosclerosis. Circulation 1991; 83: IV15–25
  • Roque M., Rauch U., Reis E. D., Chesebro J. H., Fuster V., Badimon J. J. Comparative study of antithrombotic effect of a low molecular weight heparin and unfractionated heparin in an ex vivo model of deep arterial injury. Thromb Res 2000; 98: 499–505
  • Hanson S. R., Paxton L. D., Harker L. A. Iliac artery mural thrombus formation. Effect of antiplatelet therapy on 111In‐platelet deposition in baboons. Arteriosclerosis 1986; 6: 511–8
  • Cadroy Y., Horbett T. A., Hanson S. R. Discrimination between platelet‐mediated and coagulation‐mediated mechanisms in a model of complex thrombus formation in vivo. J Lab Clin Med 1989; 113: 436–48
  • Bergqvist D., Jendteg S., Johansen L., Persson U., Odegaard K. Cost of long‐term complications of deep venous thrombosis of the lower extremities: an analysis of a defined patient population in Sweden. Ann Intern Med 1997; 126: 454–7
  • Bick R. L. Proficient and cost‐effective approaches for the prevention and treatment of venous thrombosis and thromboembolism. Drugs 2000; 60: 575–95
  • Dalsing M. C., Ricotta J. J., Wakefield T., Lynch T. G., Ouriel K. Animal models for the study of lower extremity chronic venous disease: lessons learned and future needs. Ann Vasc Surg 1998; 12: 487–94
  • Lin P. H., Chen C., Surowiec S. M., Conklin B., Bush R. L., Lumsden A. B. Evaluation of thrombolysis in a porcine model of chronic deep venous thrombosis: an endovascular model. J Vasc Surg 2001; 33: 621–7
  • Yamamoto H., Vreys I., Stassen J. M., Yoshimoto R., Vermylen J., Hoylaerts M. F. Antagonism of vWF inhibits both injury induced arterial and venous thrombosis in the hamster. Thromb Haemost 1998; 79: 202–10
  • Hanson S. R., Griffin J. H., Harker L. A., Kelly A. B., Esmon C. T., Gruber A. Antithrombotic effects of thrombin‐induced activation of endogenous protein C in primates. J Clin Invest 1993; 92: 2003–12
  • Fredrich M., Zierz R., Morser J., Wydro R., Witt W. A new animal model of venous thrombosis in rats with low flow conditions in the venous blood stream. Blood Coagul Fibrinolysis 1994; 5: 243–8
  • Scheinin T. M., Harjola P. T. Inferior vena caval pressure in infrarenal occlusion: effects of acute and chronic iliofemoral obstruction in the dog. Ann Med Exp Biol Fenn 1969; 47: 213–6
  • Hosaka J., Roy S., Kvernebo K., Enge I., Laerum F. Induced thrombosis in the pig inferior vena cava: a model of deep venous thrombosis. J Vasc Interv Radiol 1996; 7: 395–400
  • Trerotola S. O., McLennan G., Davidson D., Lane K. A., Ambrosius W. T., Lazzaro C., et al. Preclinical in vivo testing of the Arrow‐Trerotola percutaneous thrombolytic device for venous thrombosis. J Vasc Interv Radiol 2001; 12: 95–103
  • Roy S., Laerum F., Brosstad F., Kvernebo K., Sakariassen K. S. Animal model of acute deep vein thrombosis. Cardiovasc Intervent Radiol 1998; 21: 329–33
  • Hjortdal V. E., Sinclair T., Kerrigan C. L., Solymoss S. Venous ischemia in skin flaps: microcirculatory intravascular thrombosis. Plast Reconstr Surg 1994; 93: 366–74
  • Sigel B., Swami V., Can A., Parsons R. E., Golub R. M., Kolecki R., et al. Intimal hyperplasia producing thrombus organization in an experimental venous thrombosis model. J Vasc Surg 1994; 19: 350–60
  • Markou C. P., Chronos N. A., Hanson S. R. Antithrombotic effects of ionic and non‐ionic contrast media in nonhuman primates. Thromb Haemost 2001; 85: 488–93
  • Yokoyama T., Kelly A. B., Marzec U. M., Hanson S. R., Kunitada S., Harker L. A. Antithrombotic effects of orally active synthetic antagonist of activated factor X in nonhuman primates. Circulation 1995; 92: 485–91
  • Sato K., Kawasaki T., Hisamichi N., Taniuchi Y., Hirayama F., Koshio H., et al. Antithrombotic effects of YM‐60828, a newly synthesized factor Xa inhibitor, in rat thrombosis models and its effects on bleeding time. Br J Pharmacol 1998; 123: 92–96
  • Eitzman D. T., Westrick R. J., Shen Y., Bodary P. F., Gu S., Manning S. L., et al. Homozygosity for factor V Leiden leads to enhanced thrombosis and atherosclerosis in mice. Circulation 2005; 111: 1733–4
  • Ueshima S., Matsuno H., Hayashi M., Horibuchi K., Okada K., Fukao H., et al. Function of tissue‐type plasminogen activator releaser on vascular endothelial cells and thrombolysis in vivo. Thromb Haemost 2002; 87: 1069–74
  • Frisbie J. H. An animal model for venous thrombosis and spontaneous pulmonary embolism. Spinal Cord 2005; 43: 635–9
  • Smith L. H., Dixon J. D., Stringham J. R., Eren M., Elokdah H., Crandall D. L., et al. Pivotal role of PAI‐1 in a murine model of hepatic vein thrombosis. Blood 2006; 107: 132–4
  • Dupe R. J., English P. D., Smith R. A., Green J. The evaluation of plasmin and streptokinase activator complexes in a new rabbit model of venous thrombosis. Thromb Haemost 1981; 46: 528–34
  • Levi M., Biemond B. J., van Zonneveld A. J., ten Cate J. W., Pannekoek H. Inhibition of plasminogen activator inhibitor‐1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis. Circulation 1992; 85: 305–12
  • Bernat A., Sainte‐Marie M., Roque C., Ingelaere V., Maffrand J. P., Herbert J. M. Low doses of endotoxin potentiate venous thrombosis in the rabbit. Haemostasis 1994; 24: 209–18
  • Herbert J. M., Bernat A., Dol F., Herault J. P., Crepon B., Lormeau J. C. DX 9065A a novel, synthetic, selective and orally active inhibitor of factor Xa: in vitro and in vivo studies. J Pharmacol Exp Ther 1996; 276: 1030–8
  • Furugohri T., Shiozaki Y., Muramatsu S., Honda Y., Matsumoto C., Isobe K., et al. Different antithrombotic properties of factor Xa inhibitor and thrombin inhibitor in rat thrombosis models. Eur J Pharmacol 2005; 514: 35–42
  • Pierangeli S. S., Barker J. H., Stikovac D., Ackerman D., Anderson G., Barquinero J., et al. Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost 1994; 71: 670–4
  • Kang C., Bonneau M., Brouland J. P., Bal dit Sollier C., Drouet L. In vivo pig models of venous thrombosis mimicking human disease. Thromb Haemost 2003; 89: 256–63
  • Smyth S. S., Reis E. D., Vaananen H., Zhang W., Coller B. S. Variable protection of beta 3‐integrin‐deficient mice from thrombosis initiated by different mechanisms. Blood 2001; 98: 1055–62
  • Barazzone C., Belin D., Piguet P. F., Vassalli J. D., Sappino A. P. Plasminogen activator inhibitor‐1 in acute hyperoxic mouse lung injury. J Clin Invest 1996; 98: 2666–73
  • Yan S. F., Zou Y. S., Gao Y., Zhai C., Mackman N., Lee S. L., et al. Tissue factor transcription driven by Egr‐1 is a critical mechanism of murine pulmonary fibrin deposition in hypoxia. Proc Natl Acad Sci USA 1998; 95: 8298–303
  • Adachi Y., Inaba M., Amoh Y., Yoshifusa H., Nakamura Y., Suzuka H., et al. Effect of bone marrow transplantation on antiphospholipid antibody syndrome in murine lupus mice. Immunobiology 1995; 192: 218–30
  • De Paepe M. E., Trudel M. The transgenic SAD mouse: a model of human sickle cell glomerulopathy. Kidney Int 1994; 46: 1337–45
  • Hodivala‐Dilke K. M., McHugh K. P., Tsakiris D. A., Rayburn H., Crowley D., Ullman‐Cullere M., et al. Beta3‐integrin‐deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103: 229–38
  • Holvoet P., Collen D. Thrombosis and atherosclerosis. Curr Opin Lipidol 1997; 8: 320–8
  • Palabrica T. M., Liu A. C., Aronovitz M. J., Furie B., Lawn R. M., Furie B. C. Antifibrinolytic activity of apolipoprotein(a) in vivo: human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator‐mediated thrombolysis. Nat Med 1995; 1: 256–9
  • Konstantinides S., Schafer K., Koschnick S., Loskutoff D. J. Leptin‐dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest 2001; 108: 1533–40
  • Bodary P. F., Westrick R. J., Wickenheiser K. J., Shen Y., Eitzman D. T. Effect of leptin on arterial thrombosis following vascular injury in mice. JAMA 2002; 287: 1706–9
  • Wu Q., Zhao Z. Inhibition of PAI‐1: a new anti‐thrombotic approach. Curr Drug Targets Cardiovasc Haematol Disord 2002; 2: 27–42
  • Carmeliet P., Schoonjans L., Kieckens L., Ream B., Degen J., Bronson R., et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368: 419–24
  • Christie P. D., Edelberg J. M., Picard M. H., Foulkes A. S., Mamuya W., Weiler‐Guettler H., et al. A murine model of myocardial microvascular thrombosis. J Clin Invest 1999; 104: 533–9
  • Carmeliet P., Stassen J. M., Schoonjans L., Ream B., van den Oord J. J., De Mol M., et al. Plasminogen activator inhibitor‐1 gene‐deficient mice. II. Effects on hemostasis, thrombosis, and thrombolysis. J Clin Invest 1993; 92: 2756–60
  • Kato H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: basic and clinical aspects. Arterioscler Thromb Vasc Biol 2002; 22: 539–48
  • He L., Vicente C. P., Westrick R. J., Eitzman D. T., Tollefsen D. M. Heparin cofactor II inhibits arterial thrombosis after endothelial injury. J Clin Invest 2002; 109: 213–9
  • Rosen E. D., Chan J. C., Idusogie E., Clotman F., Vlasuk G., Luther T., et al. Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 1997; 390: 290–4
  • Cui J., O'Shea K. S., Purkayastha A., Saunders T. L., Ginsburg D. Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature 1996; 384: 66–68
  • Dewerchin M., Liang Z., Moons L., Carmeliet P., Castellino F. J., Collen D., et al. Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice. Thromb Haemost 2000; 83: 185–90
  • Bi L., Lawler A. M., Antonarakis S. E., High K. A., Gearhart J. D., Kazazian H. H., Jr. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 1995; 10: 119–21
  • Wang L., Zoppe M., Hackeng T. M., Griffin J. H., Lee K. F., Verma I. M. A factor IX‐deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci USA 1997; 94: 11563–6
  • Khallou‐Laschet J., Caligiuri G., Tupin E., Gaston A. T., Poirier B., Groyer E., et al. Role of the intrinsic coagulation pathway in atherogenesis assessed in hemophilic apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2005; 25: e123–6
  • Evans J. P., Brinkhous K. M., Brayer G. D., Reisner H. M., High K. A. Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci USA 1989; 86: 10095–9
  • Shivdasani R. A., Rosenblatt M. F., Zucker‐Franklin D., Jackson C. W., Hunt P., Saris C. J., Orkin S. H. Transcription factor NF‐E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 1995; 81: 695–704
  • Lay A. J., Liang Z., Rosen E. D., Castellino F. J. Mice with a severe deficiency in protein C display prothrombotic and proinflammatory phenotypes and compromised maternal reproductive capabilities. J Clin Invest 2005; 115: 1552–61
  • Weiler H. Mouse models of thrombosis: thrombomodulin. Thromb Haemost 2004; 92: 467–77
  • Healy A. M., Hancock W. W., Christie P. D., Rayburn H. B., Rosenberg R. D. Intravascular coagulation activation in a murine model of thrombomodulin deficiency: effects of lesion size, age, and hypoxia on fibrin deposition. Blood 1998; 92: 4188–97
  • Isermann B., Hendrickson S. B., Zogg M., Wing M., Cummiskey M., Kisanuki Y. Y., et al. Endothelium‐specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile‐onset thrombosis. J Clin Invest 2001; 108: 537–46
  • Waugh J. M., Kattash M., Li J., Yuksel E., Kuo M. D., Lussier M., et al. Gene therapy to promote thromboresistance: local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an in vivo rabbit model. Proc Natl Acad Sci USA 1999; 96: 1065–70
  • Hasenstab D., Lea H., Hart C. E., Lok S., Clowes A. W. Tissue factor overexpression in rat arterial neointima models thrombosis and progression of advanced atherosclerosis. Circulation 2000; 101: 2651–7
  • Ikeda U., Hojo Y., Shimada K. Tissue factor overexpression in rat arterial neointima models: thrombosis and progression of advanced atherosclerosis. Circulation 2001; 103: E59
  • Waugh J. M., Yuksel E., Li J., Kuo M. D., Kattash M., Saxena R., et al. Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model. Circ Res 1999; 84: 84–92
  • Taylor S. M., Reilly M. P., Schreiber A. D., Chien P., Tuckosh J. R., McKenzie S. E. Thrombosis and shock induced by activating antiplatelet antibodies in human Fc gamma RIIA transgenic mice: the interplay among antibody, spleen, and Fc receptor. Blood 2000; 96: 4254–60
  • Eitzman D. T., Westrick R. J., Nabel E. G., Ginsburg D. Plasminogen activator inhibitor‐1 and vitronectin promote vascular thrombosis in mice. Blood 2000; 95: 577–80
  • Kawasaki T., Dewerchin M., Lijnen H. R., Vermylen J., Hoylaerts M. F. Vascular release of plasminogen activator inhibitor‐1 impairs fibrinolysis during acute arterial thrombosis in mice. Blood 2000; 96: 153–60
  • Hasenstab D., Lea H., Clowes A. W. Local plasminogen activator inhibitor type 1 overexpression in rat carotid artery enhances thrombosis and endothelial regeneration while inhibiting intimal thickening. Arterioscler Thromb Vasc Biol 2000; 20: 853–9
  • Angelillo‐Scherrer A., de Frutos P., Aparicio C., Melis E., Savi P., Lupu F., et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med 2001; 7: 215–21
  • Fuster V., Griggs T. R. Porcine von Willebrand disease: implications for the pathophysiology of atherosclerosis and thrombosis. Prog Hemost Thromb 1986; 8: 159–83
  • Nichols T. C., Bellinger D. A., Johnson T. A., Lamb M. A., Griggs T. R. von Willebrand's disease prevents occlusive thrombosis in stenosed and injured porcine coronary arteries. Circ Res 1986; 59: 15–26
  • Bugge T. H., Flick M. J., Daugherty C. C., Degen J. L. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 1995; 9: 794–807
  • Singh I., Smith A., Vanzieleghem B., Collen D., Burnand K., Saint‐Remy J. M., et al. Antithrombotic effects of controlled inhibition of factor VIII with a partially inhibitory human monoclonal antibody in a murine vena cava thrombosis model. Blood 2002; 99: 3235–40
  • Wu K. K. Prostacyclin and nitric oxide‐related gene transfer in preventing arterial thrombosis and restenosis. Agents Actions 1997; Suppl 48: 107–23
  • Handy D. E., Loscalzo J. Homocysteine and atherothrombosis: diagnosis and treatment. Curr Atheroscler Rep 2003; 5: 276–83
  • Zhou J., Møller J., Danielsen C. C., Bentzon J., Ravn H. B., Austin R. C., et al. Hyperhomocysteinemia promotes the development of collagen‐rich and stable plaques in apoE‐deficient mice. Arterioscler Thromb Vasc Biol 2001; 21: 1470–6
  • Zhou J., Møller J., Ritskes‐Hoitinga M., Larsen M. L., Austin R. C., et al. Effects of vitamin supplementation and hyperhomocysteinemia on atherosclerosis in apoE‐deficient mice. Atherosclerosis 2003; 168: 255–62
  • Wang H., Jiang X., Yang F., Gaubatz J. W., Ma L., Magera M. J., et al. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine betasynthase and apolipoprotein E double knock‐out mice with and without dietary perturbation. Blood 2003; 101: 3901–7
  • Hofmann M. A., Lalla E., Lu Y., Gleason M. R., Wolf B. M., Tanji N., et al. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 2001; 107: 675–83
  • Watanabe M., Osada J., Aratani Y., Kluckman K., Reddick R., Malinow M. R., et al. Mice deficient in cystathionine beta‐synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci USA 1995; 92: 1585–9
  • McCully K. S. Homocysteine and vascular disease. Nat Med 1996; 2: 386–9
  • Mudd S. H., Levy H. L., Skovby F. Disorders of transsulfuration. The metabolic basis for inherited disease, C. R Scriver, A. L Beadet, W. S Sly, D Vallee. McGraw‐Hill, , New York 1989
  • Selhub J., Jacques P. F., Bostom A. G., D'Agostino R. B., Wilson P. W., Belanger A. J., et al. Association between plasma homocysteine concentrations and extracranial carotid‐artery stenosis. N Engl J Med 1995; 332: 286–91
  • Ueland P. M., Refsum H., Beresford S. A. A., Vollset S. E. The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 2000; 72: 324–32
  • Welch G. N., Loscalzo J. N. Homocysteine and atherothrombosis. N Engl J Med 1998; 338: 1042–50
  • Wilcken D. E. L., Dudman N. P. B. Homocystinuria and atherosclerosis. Molecular genetics of coronary artery disease; candidate genes and process in atherosclerosis. Monograms in human genetics, A. J Lusis, J. I Rotter, R. S Sparkes. Karger, , New York 1992
  • Eberhardt R. T., Forgione M. A., Cap A., Leopold J. A., Rudd M. A., Tolliet M., et al. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 2000; 106: 483–91
  • Lang D., Kredan M. B., Moat S. J., Hussain S. A., Powell C. A., Bellamy M. F., et al. Homocysteine‐induced inhibition of endothelium‐dependent relaxation in rabbit aorta: role for superoxide anions. Arterioscler Thromb Vasc Biol 2000; 20: 422–7
  • Ambrosi P., Rolland P. H., Bodard H., Barlatier A., Charpiot P., Guisgand G., et al. Effects of folate supplementation in hyperhomocysteinemic pigs. J Am Coll Cardiol 1999; 34: 274–9
  • Lentz S. R., Erger R. A., Dayal S., Maeda N., Malinow M. R., Heistad D. D., et al. Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine beta‐synthase‐deficient mice. Am J Physiol Heart Circ Physiol 2000; 279: H970–H5
  • Lentz S. R., Malinow M. R., Piegors D. J., Bhopatkar‐Teredesai M., Faraci F. M., Heistad D. D. Consequences of hyperhomocyst(e)inemia on vascular function in atherosclerotic monkeys. Arterioscler Thromb Vasc Biol 1997; 17: 2930–4
  • Lentz S. R., Piegors D. J., Malinow R. M., Heistad D. D. Supplementation of atherogenic diet with B vitamins does not prevent atherosclerosis or vascular dysfunction in monkeys. Circulation 2001; 103: 1006–11
  • Chen Z., Karaplis A. C., Ackerman S. L., Pogribny I. P., Melnyk S., Lussier‐Cacan S., et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 2001; 10: 433–43
  • de Nigris F., Lerman A., Ignarro L. J., Williams‐Ignarro S., Sica V., Baker A. H., et al. Oxidation‐sensitive mechanisms, vascular apoptosis and atherosclerosis. Trends Mol Med 2003; 9: 351–9
  • Ignarro L. J., Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diab Rep 2005; 5: 17–23
  • Steinberg D. The pathogenesis of atherosclerosis: an interpretive history of the cholesterol controversy, part III: mechanistically defining the role of hyperlipidemia. J Lipid Res 2005; 46: 2037–51
  • Celi A., Merrill‐Skoloff G., Gross P., Falati S., Sim D. S., Flaumenhaft R., et al. Thrombus formation: direct real‐time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscopy. J Thromb Haemost 2003; 1: 60–8
  • Falati S., Gross P., Merrill‐Skoloff G., Furie B. C., Furie B. Real‐time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002; 8: 1175–81
  • Maguire P. B. Platelet proteomics: identification of potential therapeutic targets. Pathophysiol Haemost Thromb 2004; 33: 481–6
  • Nutescu E., Singh‐Khalsa M. Heparin Consensus Group. Treatment of venous thromboembolism: challenging the unfractionated heparin standard. Pharmacotherapy 2004; 24: 127S–31S
  • Fareed J., Ma Q., Florian M., Maddineni J., Iqbal O., Hoppensteadt D. A., et al. Differentiation of low‐molecular‐weight heparins: impact on the future of the management of thrombosis. Semin Thromb Hemost 2004; 30(Suppl 1)89–104
  • Valanzano A. Rules of good practice in the care of laboratory animals used in biomedical research. Ann Ist Super Sanita 2004; 40: 201–3
  • Flecknell P. Replacement, reduction and refinement. ALTEX 2002; 19: 73–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.