183
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Association of C34T AMPD1 gene polymorphism with features of metabolic syndrome in patients with coronary artery disease or heart failure

, , , , , , , , , , , & show all
Pages 102-112 | Received 21 Jun 2008, Accepted 14 Aug 2008, Published online: 08 Jul 2009

References

  • Morisaki T., Sabina R. L., Holmes E. W. Adenylate deaminase. A multigene family in humans and rats. J Biol Chem 1990; 265: 11482–6
  • Morisaki T., Gross M., Morisaki H., Pongratz D., Zöllner N., Holmes E. W. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci USA 1992; 89: 6457–61
  • Norman B., Mahnke‐Zizelman D. K., Vallis A., Sabina R. L. Genetic and other determinants of AMP deaminase activity in healthy adult skeletal muscle. J Appl Physiol 1998; 85: 1273–8
  • Sabina R. L., Swain J. L., Patten B. M., Ashizawa T., O'Brien W. E., Holmes E. W. Disruption of the purine nucleotide cycle. A potential explanation for muscle dysfunction in myoadenylate deaminase deficiency. J Clin Invest 1980; 66: 1419–23
  • Gross M. Clinical heterogeneity and molecular mechanisms in inborn muscle AMP deaminase deficiency. Inherit Metab Dis 1997; 20: 186–92
  • Tarnopolsky M. A., Parise G., Gibala M. J., Graham T. E., Rush J. W. Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans. J Physiol 2001; 533: 881–9
  • Kalsi K. K., Yuen A. H., Rybakowska I. M., Johnson P. H., Slominska E., Birks E. J., Kaletha K., Yakoub M. H., Smolensk R. T. Decreased cardiac activity of AMP deaminase in subjects with the AMPD1 mutation – a potential mechanism of protection in heart failure. Cardiovasc Res 2003; 59: 678–84
  • Loh E., Rebbeck T. R., Mahoney P. D., DeNofrio D., Swain J. L., Holmes E. W. Common variant in AMPD1 gene predicts improved clinical outcome in patients with heart failure. Circulation 1999; 99: 1422–5
  • Gastmann A., Sigusch H. H., Henke A., Reinhardt D., Surber R., Gastmann O., Figulla H. R. Role of adenosine monophosphate deaminase‐1 gene polymorphism in patients with congestive heart failure (influence on tumor necrosis factor‐alpha level and outcome). Am J Cardiol 2004; 93: 1260–4
  • Yazaki Y., Muhlestein J. B., Carlquist J. F., Bair T. L., Horne B. D., Renlund D. G., Andersson J. L. A common variant of the AMPD1 gene predicts improved survival in patients with ischemic left ventricular dysfunction. J Card Fail 2004; 10: 316–20
  • Anderson J. L., Habashi J., Carlquist J. F., Muhlestein J. B., Horne B. D., Bair T. L., Pearson R. R., Hart N. A common variant of the AMPD1 gene predicts improved cardiovascular survival in patients with coronary artery disease. J Am Coll Cardiol 2000; 36: 1248–52
  • Andreassi M. G., Botto N., Laghi‐Pasini F., Manfredi S., Ghelarducci B., Farneti A., Solinas M., Biagin A., Picano E. AMPD1 (C34T) polymorphism and clinical outcomes in patients undergoing myocardial revascularization. Int J Cardiol 2005; 101: 191–5
  • Kolek M. J., Carlquist J. F., Thaneemit‐Chen S., Lazzeroni L. C., Whiting B. M., Horne B. D., Muhlestein J. B., Lavor P., Andersson J. L. The role of a common adenosine monophosphate deaminase (AMPD)‐1 polymorphism in outcomes of ischemic and nonischemic heart failure. J Card Fail 2005; 11: 677–83
  • de Groote P., Lamblin N., Helbecque N., Mouquet F., Hermant X., Amouyel P., Dallongeville J., Bauters C. The impact of the AMPD1 gene polymorphism on exercise capacity, other prognostic parameters, and survival in patients with stable congestive heart failure: a study in 686 consecutive patients. Am Heart J 2006; 152: 736–41
  • Collins R. P., Palmer B. R., Pilbrow A. P., Frampton C. M., Troughton R. W., Yandle T. G., Skelton L., Richards A. M., Cameron V. A. Evaluation of AMPD1 C34T genotype as a predictor of mortality in heart failure and post‐myocardial infarction patients. Am Heart J 2006; 152: 312–20
  • Goodarzi M. O., Taylor K. D., Guo X., Quinones M. J., Cui J., Li X., Hang T., Yang H., Holmes E., Hsueh WA., Olefsky J., Rotter JL. Variation in the gene for muscle‐specific AMP deaminase is associated with insulin clearance, a highly heritable trait. Diabetes 2005; 54: 1222–7
  • Guo S. W., Thompson E. A. Performing the exact test of Hardy‐Weinberg proportion for multiple alleles. Biometrics 1992; 48: 361–72
  • Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97
  • International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome. 2005. Available at: http://www.idf.org
  • Agewall S., Norman B. Association between AMPD1 gene polymorphism and coagulation factors in patients with coronary heart disease. Pathophysiol Haemost Thromb 2006; 35: 440–4
  • Rico‐Sanz J., Rankinen T., Joanisse D. R., Leon A. S., Skinner J. S., Wilmore J. H., Rao D. C., Bouchard C. HERITAGE Family study. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study. Physiol Genomics 2003; 14: 161–6
  • Fischer H., Esbjörnsson M., Sabina R. L., Strömberg A., Peyrard‐Janvid M., Norman B. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. J Appl Physiol 2007; 103: 315–22
  • Hand B. D., Roth S. M., Roltsch M. H., Park J. J., Kostek M. C., Ferrell R. E., Brown M. D. AMPD1 gene polymorphism and the vasodilatory response to ischemia. Life Sci 2006; 79: 1413–18
  • Winder W. W., Hardie D. G. AMP‐activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 1999; 277: E1–10
  • Steinberg G. R., Jorgensen S. B. The AMP‐activated protein kinase: role in regulation of skeletal muscle metabolism and insulin sensitivity. Mini Rev Med Chem 2007; 7: 519–26
  • Towler M. C., Hardie D. G. AMP‐activated protein kinase in metabolic control and insulin signaling. Circ Res 2007; 100: 328–41
  • Gerbitz K. D., Gempel K., Brdiczka D. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes 1996; 45: 113–26
  • Bottini E., Gloria‐Bottini F. Adenosine deaminase and body mass index in non‐insulin‐dependent diabetes mellitus. Metabolism 1999; 48: 949–51
  • Gloria‐Bottini F., Bottini E., Lucarini N., Palmarino R. Further observations on the relationship between adenosine deaminase and body mass. Metab Clin Exp 1999; 48: 1336
  • Thong F. S., Graham T. E. The putative roles of adenosine in insulin‐ and exercise‐mediated regulation of glucose transport and glycogen metabolism in skeletal muscle. Can J Appl Physiol 2002; 27: 152–78
  • Palaniappan L., Carnethon M. R., Wang Y., Hanley A. J., Fortmann S. P., Haffner S. M., Wagenknecht L. Predictors of the incident metabolic syndrome in adults: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2004; 27: 788–93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.