135
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Erythropoietin attenuates hypertrophy of neonatal rat cardiac myocytes induced by angiotensin‐II in vitro

, , , , &
Pages 518-525 | Received 26 Sep 2008, Published online: 26 Aug 2009

References

  • Pokharel S, Sharma UC, Pinto YM. Left ventricular hypertrophy: virtuous intentions, malign consequences. Int J Biochem Cell Biol 2003; 35: 802–6
  • Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target?. Circulation 2004; 109: 1580–9
  • Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE, Vatner SF. Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. Am J Physiol Heart Circ Physiol 2003; 284: H1043–7
  • Cai Z, Manalo DJ, Wei G, Rodriguez ERFox‐Talbot K, Lu H, Zweier JL, Semenza GL. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia‐reperfusion injury. Circulation 2003; 108: 79–85
  • Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Arcasoy MO. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia‐reperfusion injury. FASEB J 2004; 18: 1031–3
  • Jones M, Schenkel B, Just J. Exporting alfa's effect on left ventricular hypertrophy and subsequent mortality. Int J Cardiol 2005; 100: 253–65
  • Hale SL, Sesti C, Kloner RA. Administration of erythropoietin fails to improve long‐term healing or cardiac function after myocardial infarction in the rat. J Cardiovasc Pharmacol 2005; 46: 211–15
  • Moon C, Krawczyk M, Paik D, Coleman T, Brines M, Juhaszova M, Sollott SJ, Lakatta EG, Talan MI. Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties. J Pharmacol Exp Ther 2006; 316: 999–1005
  • Shah AM, MacCarthy PA. Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther 2000; 86: 49–86
  • Rui T, Feng Q, Lei M, Peng T, Zhang J, Xu M, Abel ED, Xenocostas A, Kvietys PR. Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP‐1. Cardiovasc Res 2005; 65: 719–27
  • Burger D, Lei M, Geoghegan‐Morphet N, Lu X, Xenocostas A, Feng Q. Erythropoietin protects cardiomyocytes from apoptosis via up‐regulation of endothelial nitric oxide synthase. Cardiovasc Res 2006; 72: 51–9
  • Cherian L, Goodman JC, Robertson C. Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats. J Pharmacol Exp Ther 2007; 322: 789–94
  • Santhanam AV, Katusic ZS. Erythropoietin and cerebral vascular protection: role of nitric oxide. Acta Pharmacol Sin 2006; 27: 1389–94
  • Li Y, Takemura G, Okada H, Miyata S, Maruyama R, Li L, Higuchi M, Minatoguchi S, Fujiwara T, Fujiwara H. Reduction of inflammatory cytokine expression and oxidative damage by erythropoietin in chronic heart failure. Cardiovasc Res 2006; 71: 684–94
  • Schultz Jel J, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman T. TGF‐beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest 2002; 109: 787–96
  • Simpson P, McGrath A, Savion S. Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res 1982; 51: 787–801
  • Zarain‐Herzberg A, Rupp H, Elimban V, Dhalla NS. Modification of sarcoplasmic reticulum gene expression in pressure overload cardiac hypertrophy by etomoxir. FASEB J 1996; 10: 1303–9
  • Pfaffl MW. A new mathematical model for relative quantification in real‐time RT‐PCR. Nucleic Acids Res 2001; 29: e45
  • Harada M, Itoh H, Nakagawa O, Ogawa Y, Miyamoto Y, Kuwahara K, Ogawa E, Igaki T, Yamashita J, Masuda I, Yoshimasa T, Tanaka I, Saito Y, Nakao K. Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin‐1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation 1997; 96: 3737–44
  • Brines M, Cerami A. Erythropoietin‐mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med 2008; 264: 405–32
  • Koul D, Dhar S, Chen‐Scarabelli C, Guglin M, Scarabelli TM. Erythropoietin: new horizon in cardiovascular medicine. Recent Patents Cardiovasc Drug Discov 2007; 2: 5–12
  • Santhanam AV, Smith LA, Akiyama M, Rosales AG, Bailey KR, Katusic ZS. Role of endothelial NO synthase phosphorylation in cerebrovascular protective effect of recombinant erythropoietin during subarachnoid hemorrhage‐induced cerebral vasospasm. Stroke 2005; 36: 2731–7
  • Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, Wen J, Takeshita A. Fluvastatin, a 3‐hydroxy‐3‐methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2002; 105: 868–73
  • Qin J, Liu ZX. FAK‐related nonkinase attenuates hypertrophy induced by angiotensin‐II in cultured neonatal rat cardiac myocytes. Acta Pharmacol Sin 2006; 27: 1159–64
  • DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ. Akt1 is required for physiological cardiac growth. Circulation 2006; 113: 2097–104
  • Tsujita Y, Muraski J, Shiraishi I, Kato T, Kajstura J, Anversa P, Sussman MA. Nuclear targeting of Akt antagonizes aspects of cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 2006; 103: 11946–51
  • Bhuiyan MS, Shioda N, Fukunaga K. Ovariectomy augments pressure overload-induced hypertrophy associated with changes in Akt and nitric oxide synthase signaling pathways in female rats. Am J Physiol Endocrinol Metab 2007; 293: E1606–14
  • Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 2003; 285: L1179–83
  • Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE, Venema RC. Reciprocal phosphorylation and regulation of endothelial nitric‐oxide synthase in response to bradykinin stimulation. J Biol Chem 2001; 276: 16587–91
  • Hisamoto K, Ohmichi M, Kurachi H, Hayakawa J, Kanda Y, Nishio Y, Adachi K, Tasaka K, Miyoshi E, Fujiwara N, Taniguchi N, Murata Y. Estrogen induces the Akt‐dependent activation of endothelial nitric‐oxide synthase in vascular endothelial cells. J Biol Chem 2001; 276: 3459–67
  • Tanimoto T, Jin ZG, Berk BC. Transactivation of vascular endothelial growth factor (VEGF) receptor Flk‐1/KDR is involved in sphingosine 1‐phosphate‐stimulated phosphorylation of Akt and endothelial nitric‐oxide synthase (eNOS). J Biol Chem 2002; 277: 42997–3001
  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt‐dependent phosphorylation. Nature 1999; 399: 601–5
  • McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain “calcium‐independent” eNOS activation by phosphorylation. J Biol Chem 2000; 275: 6123–8
  • Gupta S, Das B, Sen S. Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal 2007; 9: 623–52
  • Park SH, Choi MJ, Song IK, Choi SY, Nam JO, Kim CD, Lee BH, Park RW, Park KM, Kim YJ, Kim IS, Kwon TH, Kim YL. Erythropoietin decreases renal fibrosis in mice with ureteral obstruction: role of inhibiting TGF‐beta‐induced epithelial‐to‐mesenchymal transition. J Am Soc Nephrol 2007; 18: 1497–507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.