116
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Transcerebral exchange kinetics of large neutral amino acids during acute inspiratory hypoxia in humans

, , , , , , & show all
Pages 595-600 | Received 01 Dec 2018, Accepted 19 Oct 2019, Published online: 26 Oct 2019

References

  • Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8(10):557–566.
  • Larsen FS, Bjerring PN. Acute liver failure. Curr Opin Crit Care. 2011;17(2):160–164.
  • Basler T, Meier-Hellmann A, Bredle D, et al. Amino acid imbalance early in septic encephalopathy. Intensive Care Med. 2002;28(3):293–298.
  • Mizock BA, Sabelli HC, Dubin A, et al. Septic encephalopathy. Evidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy. Arch Intern Med. 1990;150(2):443–449.
  • Strauss GI, Knudsen GM, Kondrup J, et al. Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure. Gastroenterology. 2001;121(5):1109–1119.
  • Knudsen GM, Schmidt J, Almdal T, et al. Passage of amino acids and glucose across the blood-brain barrier in patients with hepatic encephalopathy. Hepatology. 1993;17(6):987–992.
  • Dejong CHC, van de Poll MCG, Soeters PB, et al. Aromatic amino acid metabolism during liver failure. J Nutr. 2007;137(6):1579S–1585S. discussion 1597S-1598S.
  • Druml W, Heinzel G, Kleinberger G. Amino acid kinetics in patients with sepsis. Am J Clin Nutr. 2001;73(5):908–913.
  • Hasselgren PO, Pedersen P, Sax HC, et al. Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg. 1988;123(8):992–999.
  • Smith Q, Stoll J. Blood-brain barrier amino acid transport. In: Pardridge WM, editor. Introduction to the blood-brain barrier: methodology, biology and pathology. Cambridge: Cambridge University Press; 1998. p. 188–197.
  • Fischer JE. The development of the false neurotransmitter concept of hepatic encephalopathy. In: Capocaccia L, Fischer JE, Rossi-Fanelli F, editors. Hepatic encephalopathy in chronic liver failure. Boston: Springer, Boston, MA; 1984. p. 53–60.
  • Berg RMG, Plovsing RR, Ronit A, Bailey DM, et al. Disassociation of static and dynamic cerebral autoregulatory performance in healthy volunteers after lipopolysaccharide infusion and in patients with sepsis. Am J Physiol Regul Integr Comp Physiol. 2012;303(11):R1127–35.
  • Bihari D, Gimson AE, Waterson M, et al. Tissue hypoxia during fulminant hepatic failure. Crit Care Med. 1985;13(12):1034–1039.
  • Saugel B, Klein M, Hapfelmeier A, et al. Effects of red blood cell transfusion on hemodynamic parameters: a prospective study in intensive care unit patients. Scand J Trauma Resusc Emerg Med. 2013;21:21.
  • Colle I, Langlet P, Barrière E, et al. Evolution of hypoxemia in patients with severe cirrhosis. J Gastroenterol Hepatol. 2002;17(10):1106–1109.
  • Dahl RH, Berg RMG, Taudorf S, et al. A reassessment of the blood-brain barrier transport of large neutral amino acids during acute systemic inflammation in humans. Clin Physiol Funct Imaging. 2018;38(4):656–662.
  • Bailey DM, Taudorf S, Berg RMG, et al. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness? Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1283–92.
  • Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–312.
  • Wuensch T, Quint J, Mueller V, et al. Identification of serological markers for pre- and postoperative fasting periods. Clin Nutr ESPEN. 2019;30:131–137.
  • Taudorf S, Berg RMG, Bailey DM, et al. Cerebral blood flow and oxygen metabolism measured with the Kety-Schmidt method using nitrous oxide. Acta Anaesthesiol Scand. 2009;53(2):159–167.
  • Bailey DM, Taudorf S, Berg RMG, et al. Transcerebral exchange kinetics of nitrite and calcitonin gene-related peptide in acute mountain sickness: evidence against trigeminovascular activation? Stroke. 2009;40(6):2205–2208.
  • Bailey DM, Taudorf S, Berg RMG, et al. Cerebral formation of free radicals during hypoxia does not cause structural damage and is associated with a reduction in mitochondrial PO2; evidence of O2-sensing in humans? J Cereb Blood Flow Metab. 2011;31(4):1020–1026.
  • Bailey DM, Lundby C, Berg RMG, et al. On the antioxidant properties of erythropoietin and its association with the oxidative-nitrosative stress response to hypoxia in humans. Acta Physiol. 2014;212(2):175–187.
  • Rasmussen P, Nordsborg N, Taudorf S, et al. Brain and skin do not contribute to the systemic rise in erythropoietin during acute hypoxia in humans. FASEB J. 2012;26(5):1831–1834.
  • Ellison S, Pardridge WM. Red cell phenylalanine is not available for transport through the blood-brain barrier. Neurochem Res. 1990;15(8):769–772.
  • Hagenfeldt L, Arvidsson A. The distribution of amino acids between plasma and erythrocytes. Clin Chim Acta. 1980;100(2):133–141.
  • Dahl RH, Berg R. A mathematical approach for assessing the transport of large neutral amino acids across the blood-brain barrier in man. Acta Neurobiol Exp (Wars). 2015;75(4):446–456.
  • Smith QR, Momma S, Aoyagi M, et al. Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem. 1987;49(5):1651–1658.
  • Meier C, Ristic Z, Klauser S, et al. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 2002;21(4):580–589.
  • Crone C. The permeabolity of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand. 1963;58(4):292–305.
  • Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959;197(6):1205–1210.
  • Takezawa J, Taenaka N, Nishijima MK, et al. Amino acids and thiobarbituric acid reactive substances in cerebrospinal fluid and plasma of patients with septic encephalopathy. Crit Care Med. 1983;11(11):876–879.
  • Freund HR, Ryan JA, Fischer JE. Amino acid derangements in patients with sepsis: treatment with branched chain amino acid rich infusions. Ann Surg. 1978;188(3):423–430.
  • Berg RMG, Taudorf S, Bailey DM, et al. Cerebral net exchange of large neutral amino acids after lipopolysaccharide infusion in healthy humans. Crit Care. 2010;14(1):R16.
  • Verrey F. System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch - Eur J Physiol. 2003;445(5):529–533.
  • Sánchez del Pino MM, Peterson DR, Hawkins RA. Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier. J Biol Chem. 1995;270(25):14913–14918.
  • O’Kane RL, Hawkins R. A. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. Am J Physiol Endocrinol Metab. 2003;285:E1167–73.
  • O'Kane RL, Viña JR, Simpson I, et al. Hawkins R a. Na+ -dependent neutral amino acid transporters A, ASC, and N of the blood-brain barrier: mechanisms for neutral amino acid removal. Am J Physiol Endocrinol Metab. 2004;287(4):E622–9.
  • Kreis R. 1H-magnetic resonance spectroscopy of cerebral phenylalanine content and its transport at the blood-brain barrier. In: Choi I, Gruetter R, editors. Neural Metabolism In Vivo. Boston: Springer; 2012. p. 1117–1134.
  • Ogoh S, Sato K, Nakahara H, et al. Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries. Exp Physiol. 2013;98(3):692–698.
  • Vohra R, Dalgaard LM, Vibaek J, et al. Potential metabolic markers in glaucoma and their regulation in response to hypoxia. Acta Ophthalmol. 2019;97(6):567–576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.