143
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Birth weight related essential, non-essential and conditionally essential amino acid blood concentrations in 12,000 breastfed full-term infants perinatally

, , & ORCID Icon
Pages 571-579 | Received 11 Dec 2019, Accepted 30 Aug 2020, Published online: 14 Sep 2020

References

  • Kilberg MS, Pan YX, Chen H, et al. Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr. 2005;25:59–85.
  • Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37(1):1–17.
  • Reeds PJ. Dispensable and indispensable amino acids for humans. J Nutr. 2000;130(7):1835S–1840S.
  • Morris CR, Hamilton-Reeves J, Martindale RG, et al. Acquired amino acid deficiencies: a focus on arginine and glutamine. Nutr Clin Pract. 2017;32(1):30S–47S.
  • Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J. 20097;276(7):1826–1844.
  • Manta-Vogli PD, Schulpis KH, Dotsikas Y, et al. The significant role of amino acids during pregnancy: nutritional support. J Matern Fetal Neonatal Med. 2020;33(2):334–340.
  • Zhang Z, Adelman AS, Rai D, et al. Amino acid profiles in term and preterm human milk through lactation: a systematic review. Nutrients. 2013;5(12):4800–4821.
  • Chuang CK, Lin SP, Lee HC, et al. Free amino acids in full-term and pre-term human milk and infant formula. J Pediatr Gastroenterol Nutr. 2005;40:496–500.
  • Garcia-Rodenas CL, Affolter M, Vinyes-Pares G, et al. Amino acid composition of breast milk from urban Chinese mothers. Nutrients. 2016;8(10):606.
  • Sánchez CL, Cubero J, Sánchez J, et al. Evolution of the circadian profile of human milk amino acids during breastfeeding. J Appl Biomed. 2013;11(2):59–70.
  • Lindblad BS, Rahimtoola RJ. A pilot study of the quality of human milk in a lower socio-economic group in Karachi, Pakistan. Acta Paediatr Scand. 1974;63(1):125–128.
  • Lönnerdal B. Effects of maternal dietary intake on human milk composition. J Nutr. 1986;116(4):499–513.
  • Trugo NM, Donangelo CM, Koury JC, et al. Concentration and distribution pattern of selected micronutrients in preterm and term milk from urban Brazilian mothers during early lactation. Eur J Clin Nutr. 1988;42(6):497–507.
  • Manta-Vogli PD, Schulpis KH, Loukas YL, et al. Quantitation of the arginine family amino acids in the blood of full-term infants perinatally in relation to their birth weight. J Pediatr Endocrinol Metab. 2019;32(8):803–809.
  • Hellenic Statistical Authority [Internet]. Piraeus (Greece): ELSTAT; 2019 [2019 December 10]. http//www.statistics.gr
  • Loukas YL, Soumelas GS, Dotsikas Y, et al. Expanded newborn screening in Greece: 30 months of experience. J Inherit Metab Dis. 2010;33(S3):S341–S348.
  • Jain V, Singhal A. Catch up growth in low birth weight infants: striking a healthy balance. Rev Endocr Metab Disord. 2012;13(2):141–147.
  • Shimomura Y, Kitaura Y. Physiological and pathological roles of branched-chain amino acids in the regulation of protein and energy metabolism and neurological functions. Pharmacol Res. 2018;133:215–217.
  • Zhou H, Yu B, Gao J, et al. Regulation of intestinal health by branched-chain amino acids. Anim Sci J. 2018;89(1):3–11.
  • Conway ME, Hutson SM. BCAA metabolism and NH3 homeostasis. Adv Neurobiol. 2016;13:99–132.
  • Davis TA, Fiorotto ML. Regulation of muscle growth in neonates. Curr Opin Clin Nutr Metab Care. 2009;2:78–85.
  • Ehling S, Reddy TM. Direct analysis of leucine and its metabolites β-hydroxy-β-methylbutyric acid, α-ketoisocaproic acid, and α-hydroxyisocaproic acid in human breast milk by liquid chromatography-mass spectrometry. J Agric Food Chem. 2015;63(34):7567–7573.
  • Galante L, Milan AM, Reynolds CM, et al. Sex-specific human milk composition: the role of infant sex in determining early life nutrition. Nutrients. 2018;10(9):1194.
  • Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018;15:8–19.
  • Day PE, Ntani G, Crozier SR, et al. Maternal factors are associated with the expression of placental genes involved in amino acid metabolism and transport. PLoS One. 2015;10(12):e0143653.
  • Robinson JL, Bertolo RF. The pediatric methionine requirement should incorporate remethylation potential and transmethylation demands. Adv Nutr. 2016;7(3):523–534.
  • Thomas B, Gruca LL, Bennett C, et al. Metabolism of methionine in the newborn infant: response to the parenteral and enteral administration of nutrients. Pediatr Res. 2008;64(4):381–386.
  • Kalhan SC, Bier DM. Protein and amino acid metabolism in the human newborn. Annu Rev Nutr. 2008;28:389–410.
  • Ginguay A, Cynober L, Emmanuel Curis E, et al. Ornithine aminotransferase, an important glutamate-metabolizing enzyme at the cross roads of multiple metabolic pathways. Biology. 2017;6(4):18.
  • Wu G, Morris SM. Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(1):1–17.
  • Ioannou HP, Diamanti E, Piretzi K, et al. Plasma citrulline levels in preterm neonates with necrotizing enterocolitis. Early Hum Dev. 2012;88(7):563–566.
  • Crenn P, Coudray-Lucas C, Thuillier F, et al. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000;1719(6):1496–1505.
  • Tharakan JF, Yu YM, Zurakowski D, et al. Adaptation to a long term (4 weeks) arginine- and precursor (glutamate, proline and aspartate)-free diet. Clin Nutr. 2008;27(4):513–522.
  • Janzen N, Terhardt M, Sander S, et al. Towards newborn screening for ornithine transcarbamylase deficiency: fast non-chromatographic orotic acid quantification from dried blood spots by tandem mass spectrometry. Clin Chim Acta. 2014;430:28–32.
  • Jadhao SB, Yang RZ, Lin Q, et al. Murine alanine aminotransferase: cDNA cloning, functional expression, and differential gene regulation in mouse fatty liver. Hepatology. 2004;39(5):1297–1302.
  • Quesnele JJ, Laframboise MA, Wong JJ, et al. The effects of beta-alanine supplementation on performance: a systematic review of the literature. Int J Sport Nutr Exerc Metab. 2014;24(1):14–27.
  • Yamamoto H, Kondo K, Tanaka T, et al. Reference intervals for plasma-free amino acid in a Japanese population. Ann Clin Biochem. 2016;53(3):357–364.
  • Wang B, Wu Z, Ji Y, et al. l-Glutamine enhances tight junction integrity by activating CaMK kinase 2-AMP-activated protein kinase signaling in intestinal porcine epithelial cells. J Nutr. 2016;146(3):501–508.
  • Ivorra C, Garcia-Vicent C, Chaves FJ, et al. Metabolomic profiling in blood from umbilical cords of low birth weight newborns. J Transl Med. 2012;10(1):142.
  • Wu Χ, Xie C, Zhang Y, et al. Glutamate-glutamine cycle and exchange in the placenta-fetus unit during late pregnancy. Amino Acids. 2015;47(1):45–53.
  • Schulpis KH, Vlachos GD, Papakonstantinou ED, et al. Maternal-neonatal amino acid blood levels in relation to the mode of delivery. Acta Obstet Gynecol Scand. 2009;88(1):71–76.
  • Li P, Knabe DA, Kim SW, et al. Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr. 2009;139(8):1502–1509.
  • Che L, Yang Z, Xu M, et al. Maternal nutrition modulates fetal development by inducing placental efficiency changes in gilts. BMC Genom. 2017;18:213.
  • Collado MC, Santaella M, Mira-Pascual L, et al. Longitudinal study of cytokine expression, lipid profile and neuronal growth factors in human breast milk from term and preterm deliveries. Nutrients. 2015;7(10):8577–8591.
  • Brekke E, Morken TS, Sonnewald U. Glucose metabolism and astrocyte-neuron interactions in the neonatal brain . Neurochem Int. 2015;82:33–41.
  • Wilkinson DL, Bertolo RF, Brunton JA, etb al. Arginine synthesis is regulated by dietary arginine intake in the enterally fed neonatal piglet. Am J Physiol Endocrinol Metab. 2004;287(3):E454–E462.
  • Wu G. Functional amino acids in nutrition and health. Amino Acids. 2013;45(3):407–411.
  • Wu G, Wu Z, Dai Z, et al. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids. 2013;44(4):1107–1113.
  • Yang Y, Yu B, Long W, et al. Investigating the changes in amino acid values in premature infants: a pilot study. J Pediatr Endocrinol Metab. 2018;31(4):435–441.
  • Stinton C, Geppert J, Freeman K, et al. Newborn screening for tyrosinemia type 1 using succinylacetone - a systematic review of test accuracy. Orphanet J Rare Dis. 2017;12(1):48.
  • Wang W, Wu Z, Dai Z, et al. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013;45(3):463–477.
  • Wang W, Dai Z, Wu Z, et al. Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids. 2014;46(8):2037–2045.
  • Razak MA, Begum PS, Viswanath B, et al. Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxid Med Cell Longev. 2017;2017:1716701.
  • Ilcol YO, Ozbek R, Hamurtekin E, et al. Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. J Nutr Biochem. 2005;16(8):489–499.
  • Conter C, Rolland MO, Cheillan D, et al. Genetic heterogeneity of the GLDC gene in 28 unrelated patients with glycine encephalopathy. J Inherit Metab Dis. 2006;29(1):135–142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.