390
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of possible associations between tryptophan/kynurenine status and FOXP3 expression in colorectal cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 185-191 | Received 24 Sep 2021, Accepted 06 Feb 2022, Published online: 22 Apr 2022

References

  • Terry P, Giovannucci E, Michels KB, et al. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst. 2001;93(7):525–533.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 1927;8(6):519–530.
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.
  • Löb S, Königsrainer A, Rammensee H-G, et al. Inhibitors of indoleamine-2,3- dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer. 2009;9(6):445–452.
  • Platten M, Knebel Doeberitz N, Oezen I, et al. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2014;5:673.
  • Peters JC. Tryptophan nutrition and metabolism: an overview. Adv Exp Med Biol. 1991;294:345–358.
  • Austin CJD, Rendina LM. Targeting key dioxygenases in tryptophan-kynurenine metabolism for immunomodulation and cancer chemotherapy. Drug Discov Today. 2015;20(5):609–617.
  • Santhanam S, Alvarado DM, Ciorba MA. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl. Res. 2016;167(1):67–79.
  • Grimmig T, Kim M, Germer CT, et al. The role of FOXP3 in disease progression in colorectal cancer patients. Oncoimmunology. 2013;2(6):e24521–e24523.
  • Uva V, Sfondrini L, Triulzi T, et al. FOXP3 expression in tumor cells and its role in cancer progression. Atlas Genet. Cytogenet. Oncol. Haematol. 2015;19:234–239.
  • Löb S, Königsrainer A, Zieker D, et al. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother. 2009;58(1):153–157.
  • Bellanti JAI. IV: Clinical applications in health and disease; 2019. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651157.
  • Nugent JL, McCoy AN, Addamo CJ, et al. Altered tissue metabolites correlate with microbial dysbiosis in colorectal adenomas. J Proteome Res. 2014;13(4):1921–1929.
  • Chou C, Pinto AK, Curtis JD, et al. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat Immunol. 2014;15(9):884–893.
  • Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5(1):43–51.
  • Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–945.
  • Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15(4):857–865.
  • Caro D, Marchesi G, Laghi F, et al. F. Immune cells: plastic players along colorectal cancer progression. J Cell Mol Med. 2013;17(9):1088–1095.
  • De la Cruz-Merino L, Henao Carrasco F, Vicente Baz D, et al. Immune microenvironment in colorectal cancer: a new hallmark to change old paradigms. Clin Dev Immunol. 2011;2011:174149.
  • Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437.
  • Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol. 2002;3(11):999–1005.
  • Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med. 2015;372(15):1441–1452.
  • Arthur JC, Gharaibeh RZ, Mühlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 2014;5:4724.
  • Kim M, Grimmig T, Grimm M, et al. Expression of Foxp3 in colorectal cancer but not in treg cells correlates with disease progression in patients with colorectal cancer. PLOS One. 2013;8(1):e53630.
  • Dimitrakopoulos F, Papadaki H, Antonacopoulou AG, et al. Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res. 2011;31(5):1677–1683.
  • Fu H, Li C, Yang W, et al. FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: implications for tumor progression and escape. Acta Histochem. 2013;115(2):151–157.
  • Winerdal ME, Marits P, Winerdal M, et al. FOXP3 and survival in urinary bladder cancer. BJU Int. 2011;108(10):1672–1678.
  • Yoshii M, Tanaka H, Ohira M, et al. Expression of forkhead box P3 in tumour cells causes immunoregulatory function of signet ring cell carcinoma of the ll carcinoma of the stomach. Br J Cancer. 2012;106(10):1668–1674.
  • Chatrabnous N, Ghaderi A, Ariafar A, et al. Serum concentration of interleukin-35 and its association with tumor stages and FOXP3 gene polymorphism in patients with prostate cancer. Cytokine. 2019;113:221–227.
  • Chen L, Yu Q, Liu B, et al. Association of FoxP3 rs3761548 polymorphism with susceptibility to colorectal cancer in the Chinese population. Med. Oncol. 2014;31:1–4.
  • Jiang W, Zheng L, Xu L, et al. Association between FOXP3, FOXE1 gene polymorphisms and risk of differentiated thyroid cancer in Chinese Han population. Mol Biol. 2015;4:3.
  • Haghighi MF, Ghayumi MA, Behzadnia F, et al. Investigation of FOX. P3 Genetic variations at positions -2383 C/T and IVS9 + 459 T/C in Southern Iranian patients with lung carcinoma. Iran J Basic Med Sci. 2015;18(5):465–471.
  • You D, Wang Y, Zhang Y, et al. Association of Foxp3 promoter polymorphisms with susceptibility to endometrial cancer in the Chinese Han women. Medicine. 2018;97(18):e0582.
  • Zheng J, Deng J, Jiang L, et al. Heterozygous genetic variations of FOXP3 in Xp11.23 elevate breast cancer risk in Chinese population via skewed X-chromosome inactivation. Hum Mutat. 2013;34(4):619–628.
  • Jiang LL, Ruan LW. Association between FOXP3 promoter polymorphisms and cancer risk: a meta-analysis. Oncol Lett. 2014;8(6):2795–2799.
  • Engin AB, Karahalil B, Karakaya AE, et al. Helicobacter pylori and serum kynurenine- tryptophan ratio in patients with colorectal cancer. WJG. 2015;21(12):3636–3643.
  • Liu X, Shin N, Koblish HK, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010;115(17):3520–3530.
  • Ferdinande L, Decaestecker C, Verset L, et al. Clinicopathological significance of indoleamine 2,3-dioxygenase 1 expression in colorectal cancer. Br J Cancer. 2012;106(1):141–147.
  • De Jong RA, Nijman HW, Boezen HM, et al. Serum tryptophan and kynurenine concentrations as parameters for indoleamine 2,3-dioxygenase activity in patients with endometrial, ovarian, and vulvar cancer. Int. J. Gynecol. Cancer. 2011;21:1320–1327.
  • Schroecksnadel K, Winkler C, Fuith LC, et al. Tryptophan degradation in patients with gynecological cancer correlates with immune activation. Cancer Lett. 2005;223(2):323–329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.