5
Views
0
CrossRef citations to date
0
Altmetric
Miscellaneous Article

References

Pages 133-145 | Published online: 17 Mar 2010

References

  • Aberman A. Crossover PO2, a measure of the variable effect of increased P50 on mixed venous PO2. Am Rev Resp Dis 1977; 115: 173–5, (116)
  • Adair G S. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J Biol Chem 1925; 63: 529–45, (20,21)
  • Adamson J W, Finch C A. Hemoglobin function, oxygen affinity and erythropoietin. Am Rev Physiol 1975; 37: 351–69, (127)
  • Albrechtsen R, Wewer U, Wimberley P D. Immunohistochemical demonstration of a hitherto undescribed localization of hemoglobin A and F in endodermal cells of normal human yolk sac and endodermal sinus tumor. Acta Pathol Microbiol Scand (A) 1980; 88: 175–8, (34)
  • Allen D W, Wyman J, Jr., Smith C A. The oxygen equilibrium of fetal and adult human hemoglobin. J Biol Chem 1953; 203: 81–7, (35)
  • Allen D W, Schroeder W A, Balog J. Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J Am Chem Soc 1958; 80: 1628–34, (32)
  • Anderson G W, Buffalo N Y. Studies on the nucleated red cell count in the chorionic capillaries and the cord blood of various ages of pregnancy. Am J Obstet Gynecol 1941; 42: 1–14, (15)
  • Anselmino K J, Hoffmann F. Die ursachen des icterus neonatorum. Arch Gynaecol 1930; 143: 477–99, (13, 16, 34)
  • Antonini E, Wyman J, Jr., Rossi-Fanelli A, Caputo A. Studies on the relations between molecular and functional properties of hemoglobin. J Biol Chem 1962; 237: 2773–7, (24)
  • Antonini E, Wyman J, Brunori M, Fronticelli C, Bucci E, Reichlin M, Rossi A Fanelli. The oxygen Bohr effect of human fetal hemoglobin. Arch Biochem 1964; 108: 569–72, (35)
  • Arczynska W. A further study of the metabolic buffer value and the Bohr effect in human fetal whole blood. Pediatr Res 1973; 7: 996–1000, (35,42)
  • Armstrong D H, Schroeder W A, Fenninger W D. A comparison of the percentage of fetal hemoglobin in human umbilical cord blood as determined by chromatography and by alkali denaturation. Blood 1963; 22: 554–65, (119)
  • Arnone A. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature 1972; 237: 146–9, (28, 35)
  • Arnone A. X-ray studies of the interaction of CO2 with human deoxyhaemoglobin. Nature 1974; 247: 143–5, (35)
  • Arturson G, Garby L, Wranne B, Zaar B. Effect of 2,3-diphosphoglycerate on the oxygen affinity and on the proton- and carbamino-linked oxygen affinity of hemoglobin in human whole blood. Acta Physiol Scand 1974; 92: 332–40, (27)
  • Astrup P, Rørth M, Thorshauge C. Dependency on acid-base status of oxyhemoglobin dissociation and 2,3-diphosphoglycerate level in human erythrocytes. II. In vivo studies. Scand J Clin Lab Invest 1970; 26: 47–52, (96, 103)
  • Baglioni C. Correlations between genetics and chemistry of human hemoglobins. Molecular Genetics, Part I, J M Taylor. Academic Press, New York 1963; 405–75, (33)
  • Balcerzak S, Guy J, Metz E, Bromberg P. Studies on the ability of stored blood to transport oxygen in vivo. Adv Exp Med Biol 1972; 28: 433–47, (115)
  • Barcroft J, King W O R. The effect of temperature on the dissociation curve of blood. J Physiol (Lond) 1909; 39: 374–84, (28)
  • Bard H, Makowski E L, Meschia G, Battaglia F C. The relative rates of synthesis of hemoglobins A and F in immature red cells of newborn infants. Pediatrics 1970; 45: 766–72, (119, 122)
  • Bard H. The effect of placental insufficiency on fetal and adult hemoglobin synthesis. Am J Obstet Gynecol 1974; 120: 67–72, (124)
  • Bard H, Fouron J-C, Grothe A M, Soukini M A, Cornet A. The adaptation of the fetal red cells of newborn lambs to extrauterine life: The role of 2,3-diphosphoglycerate and adult hemoglobin. Pediatr Res 1976; 10: 823–5, (102)
  • Bard H, Teasdale F. Red cell oxygen affinity, hemoglobin type, 2,3-diphosphoglycerate, and pH as a function of fetal development. Pediatrics 1979; 64: 483–7, (80)
  • Battaglia F C, McGaughey H, Makowski E L, Meschia G. Postnatal changes in oxygen affinity of sheep red cells: a dual role of diphosphoglyceric acid. Am J Physiol 1970; 219: 217–21, (28)
  • Bauer C, Ludwig I, Ludwig M. Different effects of 2,3-diphosphoglycerate and adenosine triphosphate on the oxygen affinity of adult and foetal human haemoglobin. Life Sci 1968; 7: 1339–43, (13, 35, 105)
  • Bauer C, Schröder E. Carbamino compounds of haemoglobin in human adult and foetal blood. J Physiol (Lond) 1972; 227: 457–71, (35)
  • Bauer C, Baumann R, Engels U, Pacyna B. The carbon dioxide affinity of various human hemoglobins. J Biol Chem 1975; 250: 2173–6, (33, 35)
  • Baumberger J P. The accurate determination of hemoglobin, oxyhemoglobin, and carbon monoxide hemoglobin (or myohemoglobin) by means of the dropping mercury electrode. Am J Physiol 1940; 129: 308, (Abstract). (47)
  • Beaven G H, Hoch H, Holiday E R. The haemoglobins of the fetus and infant. Electrophoretic and spectroscopic differentiation of adult and foetal types. Biochem J 1951; 49: 374–81, (33)
  • Beaven G H, Ellis M J, White J C. Studies on human foetal haemoglobin. I. Detection and estimation. Br J Haematol 1960; 6: 1–22, (34, 39)
  • Bellingham A J, Huehns E R. Compensatory mechanisms in hæmolytic anæmias. Proc R Soc Med 1968a; 61: 1315–6, (51)
  • Bellingham A J, Huehns E R. Compensation in haemolytic anaemias caused by abnormal haemoglobins. Nature 1968b; 218: 924–6, (102, 115)
  • Bellingham A J, Detter J C, Lenfant C. The role of hemoglobin affinity for oxygen and red-cell 2,3-diphosphoglycerate in the management of diabetic ketoacidosis. Trans Assoc Am Physicians 1970; 83: 113–20, (95, 111)
  • Bellingham A J, Detter J C, Lenfant C. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J Clin Invest 1971; 50: 700–6, (30, 92, 97, 105, 106, 107, 108, 109)
  • Benesch R, Benesch R E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun 1967; 26: 162–7, (28, 35)
  • Benesch R E, Benesch R, Yu C I. The oxygenation of hemoglobin in the presence of 2,3-diphosphoglycerate. Effect of temperature, pH, ionic strength, and hemoglobin concentration. Biochemistry 1969; 8: 2567–71, (26, 30)
  • Bergqvist G, Bygdeman S, Rylander E. Deformability of fetal erythrocytes. Bibl Anat 1977; 16: 510–2, (15)
  • Betke K. Vergleichende untersuchung der oxydation von fetalem und erwachsenen-oxyhämoglobin durch natriumnitrit. Naturwissenschaften 1953; 40: 60, (34)
  • Betke K. Der menschliche rote blutfarbstoff bei fetus und reifem organismus. Springer-Verlag, Berlin 1954, (119)
  • Betke K, Greinacher I. Hitzedenaturierung und hitzekoagulation bei fetalem und bleibendem hämoglobin des menschen. Z Kinderheilk 1954; 75: 235–42, (33)
  • Blum S F, Oski F A. Red cell metabolism in the newborn infant. IV. Transmembrane potassium flux. Pediatrics 1969; 43: 396–401, (15)
  • Bohr C. Theoretische behandlung der quantitaven verhältnisse bei der sauerstoffaufnahme des hämogobins. Zentralbl Physiol 1904; 17: 682–91, (17)
  • Bohr C, Hasselbalch K, Krogh A. Ueber einen in biologischer beziehung wichtigen einfluss, den die kohlensäurespannung des blutes auf dessen sauerstoffbindung übt. Skand Arch Physiol 1904; 16: 402–12, (23, 25)
  • Bonta B W, Gawron E R, Warshaw J B. Neonatal red cell superoxide dismutase enzyme levels: possible role as a cellular defense mechanism against pulmonary oxygen toxicity. Pediatr Res 1977; 11: 754–7, (16)
  • Böning D, Draude W, Trost F, Meier U. Interrelation between Bohr and temperature effect on the oxygen dissociation curve in men and women. Respir Physiol 1978; 34: 195–207, (109)
  • Bracci R, Corvaglia E, Princi P, Bettini F, Pindinelli C. The role of GSH-peroxidase deficiency in the increased susceptibility to Heinz body formation in the erythrocytes of newborn infants. Ital J Biochem 1969; 18: 100–13, (16)
  • Brace R A. Fitting straight lines to experimental data. Am J Physiol 1977; 233: R94–R99, (65)
  • Brinkman R, Jonxis J H P. The occurrence of several kinds of hæmoglobin in human blood. J Physiol (Lond) 1935; 85: 117–27, (39)
  • Bromberg Y M, Abrahamov A, Saltzberger M. The effect of maternal anoxaemia on the foetal haemoglobin of the newborn. J Obstet Gynaecol Br Commonul 1956; 63: 875–7, (119)
  • Bromberg P A, Padilla F, Guy J T, Balcerzak S P. Effect of a new hemoglobin (Hb Little Rock) on the physiology of oxygen delivery. J Lab Clin Med 1971; 78: 837–8, (115)
  • Bruck E, Weintraub D H. Serum calcium and phosphorus in premature and full-term infants. Am J Dis Child 1955; 50: 653–68, (103)
  • Bunn H F, May M H, Kocholaty W F, Shields C E. Hemoglobin function in stored blood. J Clin Invest 1969; 48: 311–21, (102)
  • Bunn H F, Briehl R W. The interaction of 2,3-diphosphoglycerate with various human hemoglobins. J Clin Invest 1970; 49: 1088–95, (35, 106)
  • Bunn H F, Jandl J H. Control of hemoglobin function within the red cell. N Engl J Med 1970; 282: 1414–20, (33)
  • Bunn H F, Forget B G, Ranney H M. Human Hemoglobins. WB Saunders, Philadelphia 1977, (17)
  • Burkhard O, Barnikol W K R. Dependence of visible spectrum [ϵ (λ)] of fully oxygenated hemoglobin on concentration of hemoglobin. J Appl Physiol 1982; 52: 124–30, (31)
  • Bursaux E, Poyart C, Guesnon P, Teisseire B. Comparative effects of CO2 on the affinity for O2 of fetal and adult erythrocytes. Pfluegers Arch 1979; 378: 197–203, (35, 88)
  • Capp G L, Rigas D A, Jones R T. Hemoglobin Portland 1: a new human hemoglobin unique in structure. Science 1967; 157: 65–6, (36)
  • Capp G L, Rigas D A, Jones R T. Evidence for a new haemoglobin chain (ζ-chain). Nature 1970; 228: 278–80, (36)
  • Card R T, Brain M C. The “anemia” of childhood. Evidence for a physiological response to hyperphosphatemia. N Engl J Med 1973; 288: 388–92, (103)
  • Chanutin A, Churnish R R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem 1967; 121: 96–102, (28, 35)
  • Christiansen J, Douglas C G, Haldane J S. The absorption and dissociation of carbon dioxide by human blood. J Physiol (Lond) 1914; 48: 244–71, (27)
  • Clarke C A. Prevention of rhesus iso-immunization. Semin Haematol 1969; 6: 201–24, (33)
  • Colombo B, Kim B, Perez R Atencio, Molina C, Terrenato L. The pattern of fetal haemoglobin disappearance after birth. Br J Haematol 1976; 32: 79–87, (119, 127)
  • Cook C D, Brodie H R, Allen D W. Measurement of fetal hemoglobin in newborn infants. Correlation with gestational age and intrauterine hypoxia. Pedriatrics 1957; 20: 272–8, (119)
  • Danowski T S, Johnston S Y, Price W C, McKelvy M, Stevenson S S, McClusky E R. Protein-bound iodine in infants from birth to one year of age. Pediatrics 1951; 7: 240–4, (103)
  • Darrow R R, Nowakovski S, Austin M H. Specificity of fetal and of adult human hemoglobin precipitins. Arch Pathol 1940; 30: 873–80, (34)
  • Delivoria-Papadopoulos M, Roncevic N P, Oski F A. Postnatal changes in oxygen transport of term, premature, and sick infants: the role of red cell 2,3-diphosphoglycerate and adult hemoglobin. Pediatr Res 1971; 5: 235–45, (13, 116)
  • Delivoria-Papadopoulos M, Miller L D, Forster R E, Oski F A. The role of exchange transfusion in the management of low-birth-weight infants with and without severe respiratory distress syndrome. I. Initial observations. J Pediatr 1976; 89: 273–8, (116)
  • Dill D B, Graybiel A, Hurtado A, Taquini A C. Der gasaustausch in den lungen im alter. Z Alterforsch 1940; 2: 20–33, & 172. (25, 26)
  • Drabkin D L, Austin J H. Spectrophotometric studies: V. A technique for the analysis of undiluted blood and concentrated hemoglobin solutions. J Biol Chem 1935; 112: 105–15, (38)
  • Drabkin D L, Schmidt C F. Spectrophotometric studies. XII. Observation of circulating blood in vivo, and the direct determination of the saturation of hemoglobin in arterial blood. J Biol Chem 1945; 157: 69–83, (51)
  • Drescher H, Künzer W. Der blutfarbstoff des menschlichen feten. Klin Wochenschr 1954; 32: 92, (36, 37)
  • Dubowitz L M S, Dubowitz V, Goldberg C. Clinical assessment of gestational age in the newborn infant. J Pediatr 1970; 77: 1–10, (67, 120)
  • Duc G, Engel K (1971) Hemoglobin-oxygen affinity and erythrocyte 2,3-diphosphoglycerate (DPG) content in hyaline-membrane disease (HMD) and cardiac malformations (CM). Proc 2nd Europ Congr Perinatal Med, London, 1970, P J Huntingford, R W Beard, F E Hytten, J W Scopes. S Karger, Basel, 266–8, Perinatal Medicine. (13)
  • Duhm J, Deuticke B, Gerlach E. Metabolism of 2,3-diphosphoglycerate and glycolysis in human red blood cells under the influence of dipyridamole and inorganic sulfur compounds. Biochim Biophys Acta 1968; 170: 452–4, (29)
  • Duhm J. Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflueger Arch 1971; 326: 341–56, (28)
  • Duhm J, Gerlach E. On the mechanism of the hypoxia-induced increase of 2,3-diphosphoglycerate in erythrocytes. Studies on rat erythrocytes in vivo and on human erythrocytes in vitro. Pluegers Arch 1971; 326: 254–69, (99, 101)
  • Duhm J, Gerlach E. Metabolism and function of 2,3-diphosphoglycerate in red blood cells. The Human Red Cell in Vitro, T J Greenwalt, G A Jamieson. Grune & Stratton, New York 1974; 111–48, (103)
  • Duvelleroy M A, Buckles R G, Rosenkaimer S, Tung C, Laver M B. An oxyhemoglobin dissociation analyzer. J Appl Physiol 1970; 28: 277–33, (64)
  • Eaton J W, Brewer G J. The relationship between red cell 2,3-diphosphoglycerate and levels of hemoglobin in the human. Proc Natl Acad Sci USA 1968; 61: 756–60, (99)
  • Eaton J W, Skelton T D, Berger E. Survival at extreme altitude: protective effect of increased hemoglobin-oxygen affinity. Science 1974; 183: 743–4, (116)
  • Fabel H, Lübbers D W. Eine schnelle mikromethode zur serienmässigen bestimmung der O2-konzentration im blut. Pfluegers Arch 1964; 281: 32–3, (Abstract). (47)
  • Farrar J F, Blomfield J. Alkali-resistant haemoglobin content of blood in congenital heart disease. Br J Haematol 1963; 9: 278–87, (119)
  • Ferguson J K W, Roughton F J W. The chemical relationships and physiological importance of carbamino compounds of CO2 with hæmoglobin. J Physiol (Lond) 1934; 83: 87–102, (28)
  • Fisher D A, Odell W D, Hobel C J, Garza R. Thyroid function in the term fetus. Pediatrics 1969; 44: 526–35, (103)
  • Fraser I D, Raper A B. Observations on the change from foetal to adult erythropoiesis. Arch Dis Child 1962; 37: 289–96, (33)
  • Friis-Hansen B. Changes in body water compartments during growth. MD Thesis. Acta Pædiatr (Stockholm) 1957; 46(Suppl 110)1–68, (42)
  • Funder J, Wieth J O. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol Scand 1966; 68: 234–45, (25, 76, 77)
  • Gairdner D, Pearson J. A growth chart for premature and other infants. Arch Dis Child 1971; 46: 783–7, (120)
  • Gale R E, Clegg J B, Huehns E R. Human embryonic haemoglobins Gower 1 and Gower 2. Nature 1979; 280: 162–4, (36, 37)
  • Garby L, Sjölin S, Vuille J-C. Studies on erythro-kinetics in infancy. II. The relative rate of synthesis of haemoglobin F and haemoglobin A during the first months of life. Acta Paediatr (Stockholm) 1962; 51: 245–54, (119, 122)
  • Garby L, De Verdier C-H. Affinity of human hemoglobin A to 2,3-diphosphoglycerate. Effect of hemoglobin concentration and of pH. Scand J Clin Lab Invest 1971; 27: 345–50, (30)
  • Garby L, Robert M, Zaar B. Proton- and carbamino-linked oxygen affinity of normal human blood. Acta Physiol Scand 1972; 84: 482–92, (26)
  • Garby L, Meldon J. The Respiratory Functions of Blood. Plenum Press, New York 1977, (92, 95)
  • Gary-Bobo C M, Solomon A K. Properties of hemoglobin solutions in red cells. J Gen Physiol 1968; 52: 825–53, (30)
  • Gillies I D S, Lehmann H, Lorkin P A, Szur L, White J M. Haemoglobin Heathrow - a new high affinity haemoglobin. J Physiol (Lond) 1973; 231: 85P–87P, (115)
  • Goodford P J, Norrington F E, Paterson R A, Wootton R. The effect of 2,3-diphosphoglycerate on the oxygen dissociation curve of human haemoglobin. J Physiol (Lond) 1977; 273: 631–45, (22)
  • Gros G, Bauer C. High pK value of the N-terminal amino group of the γ-chain causes low CO2 binding of human fetal hemoglobin. Biochem Biophys Res Commun 1978; 80: 56–62, (35)
  • Gros G, Rollema H S, Jelkmann W, Gros H, Bauer C, Moll W. Net charge and oxygen affinity of human hemoglobin are independent of hemoglobin concentration. J Gen Physiol 1978; 72: 765–73, (30, 31)
  • Gross G P, Hathaway W E. Fetal erythrocyte deformability. Pediatr Res 1972; 6: 593–9, (15)
  • Gross R T, Bracci R, Rudolph N, Schroeder E, Kochen J A. Hydrogen peroxide toxicity and detoxification in the erythrocytes of newborn infants. Blood 1967; 29: 481–93, (15)
  • Haberman S, Blanton P, Martin J. Some observations on the ABO antigen sites of the erythrocyte membranes of adult and newborn infants. J Immunol 1967; 98: 150–60, (15)
  • Haddy F J. Physiology and pharmacology of the coronary circulation and myocardium, particularly in relation to coronary artery disease. Am J Med 1969; 47: 274–86, (115)
  • Haurowitz F, Hardin R L, Dicks M. Denaturation of hemoglobins by alkali. J Phys Chem 1954; 58: 103–5, (39)
  • Hebbel R P, Eaton J W, Kronenberg R S, Moore L G, Berger E M. Human llamas. Adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest 1978; 62: 593–600, (116)
  • Henriques O M. Die bindungsweise des kohlendioxyds im blute. Biochem Z 1928; 200: 1–24, (28)
  • Hey E N, Katz G. The optimal thermal environment for naked babies. Arch Dis Child 1970; 45: 328–34, (67)
  • Hill A V. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J Physiol (Lond) 1910; 40: iv–vii, (18)
  • Hilpert P, Fleischmann R G, Kempe D, Bartels H. The Bohr effect related to blood and erythrocyte pH. Am J Physiol 1963; 205: 337–40, (35)
  • Hjelm M. The content of 2,3-diphosphoglycerate and some other phosphocompounds in human erythrocytes during the neonatal period. Forsvarsmed 1969a; 5: 195–8, (82)
  • Hjelm M. The content of 2,3-diphosphoglycerate and some other phosphocompounds in human erythrocytes from healthy adults and subjects with different types of anaemia. Forsvarsmed 1969b; 5: 219–26, (99)
  • Hjelm M, Wadman B. Clinical symptoms, haemoglobin concentration and erythrocyte biochemistry. Clin Haematol 1974; 3: 689–703, (99)
  • Hlastala M P, Woodson R D, Wranne B. Influence of temperature on hemoglobin-ligand interaction in whole blood. J Appl Physiol 1977; 43: 545–50, (27)
  • Hollán S R, Szelényi J G, Breuer J H, Medgyesi G A, Sötér V N. Structural and functional differences between human foetal and adult erythrocytes. Haematologia (Budap) 1967; 4: 409–20, (15)
  • Holroyde C P, Oski F A, Gardner F H. The “pocked” erythrocyte. Red-cell surface alterations in reticuloendothelial immaturity of the neonate. N Engl J Med 1969; 281: 516–20, (15)
  • Horton B F, Thompson R B, Dozy A M, Nechtman C M, Nichols E, Huisman T H J. Inhomogeneity of hemoglobin. VI. The minor components of cord blood. Blood 1962; 20: 302–13, (36)
  • Huehns E R, Flynn F V, Butler E A, Beaven G H. Two new hæmoglobin variants in a very young human embryo. Nature 1961; 189: 496–7, (36, 37)
  • Huehns E R, Dance N, Shooter E M, Beaven G H, Gratzer W B. Some properties of the α2 and γ2 subunits of foetal haemoglobin. J Mol Biol 1962; 4: 329–37, (33)
  • Huehns E R, Beaven G H, Stevens B L. Recombination studies on haemoglobins at neutral pH. Biochem J 1964a; 92: 440–8, (33)
  • Huehns E R, Dance N, Beaven G H, Hecht F, Motulsky A G. Human embryonic hemoglobins. Cold Spring Harbor Symp Quant Biol 1964b; 29: 327–31, (37)
  • Huehns E R, Dance N, Beaven G H, Keil J V, Hecht F, Motulsky A G. Human embryonic hæmoglobins. Nature 1964c; 201: 1095–7, (36, 37)
  • Huehns E R, Hecht F, Keil J V, Motulsky A G. Developmental hemoglobin anomalies in a chromosomal triplication: D1-trisomy syndrome. Proc Natl Acad Sci USA 1964d; 51: 89–97, (37, 119)
  • Huehns E R, Beaven G H. Developmental changes in human haemoglobins. Clin Dev Med 1971; 37: 175–203, (15, 32, 33, 72, 73, 119, 121, 123)
  • Huehns E R. The structure and function of haemoglobin: clinical disorders due to abnormal haemoglobin structure. Blood and its disorders, chapter 12, R M Hardistry, D J Weatherall. Blackwell Scientific Publications, Oxford 1974; 526–629e, (35)
  • Huehns E R, Farooqui A M. Oxygen dissociation properties of human embryonic red cells. Nature 1975; 254: 335–7, (36, 37)
  • Huehns E R, May A. The structure and function of haemoglobin. 16 mm 3-D film, 25 min. University of London. 1980, (17)
  • International Standard ISO 31 Series, Technical Committee ISO/TC 12. Quantities, units, symbols, conversion factors, and conversion tables, 14 Parts. International Organization for Standardization. Geneva 1979, (7)
  • International Steering Committee. Uniform requirements for manuscripts submitted to biomedical journals. Ann Intern Med 1979; 90: 95–9, (7)
  • Isherwood D M, Isherwood D R, Annan W. Factors affecting the precision and accuracy of PO2 measurements using the Clark electrode. Clin Chim Acta 1972; 42: 295–301, (51)
  • Jones P E H, McCance R A. Enzyme activities in the blood of infants and adults. Biochem J 1949; 45: 464–7, (16)
  • Jonxis J H P, Huisman T H J. The detection and estimation of fetal hemoglobin by means of the alkali denaturation test. Blood 1956; 11: 1009–18, (39)
  • Jope E M. The ultraviolet spectral absorption of haemoglobins inside and outside the red blood cell. Haemoglobin, F J W Roughton, J C Kendrew. Butterworths, London 1949; 205–19, (33)
  • Kamuzora H, Lehmann H. Human embryonic haemoglobin including a comparison by homology of the human ζ and α chains. Nature 1975; 256: 511–3, (37)
  • Kan Y W, Golbus M S, Klein P, Dozy A M. Successful application of prenatal diagnosis in a pregnancy at risk for homozygous β-thalassemia. N Engl J Med 1975; 292: 1096–9, (15)
  • Keitt A S. Reduced nicotinamide adenine dinucleotide-linked analysis of 2,3-diphosphoglyceric acid: Spectrophotometric and fluorometric procedures. J Lab Clin Med 1971; 77: 470–5, (45)
  • Kildeberg P. Disturbances of hydrogen ion balance occurring in premature infants. II. Late metabolic acidosis. Acta Pædiatr (Stockholm) 1964; 53: 517–26, (75)
  • Kilmartin J V, Rossi-Bernardi L. Inhibition of CO2 combination and reduction of the Bohr effect in haemoglobin chemically modified at its α-amino groups. Nature 1969; 222: 1243–6, (24, 28, 33)
  • Kilmartin J V, Fogg J, Luzzana M, Rossi-Bernardi L. Role of the α-amino groups cf the α and β chains of human hemoglobin in oxygen-linked binding of carbon dioxide. J Biol Chem 1973; 248: 7039–43, (35)
  • Kilmartin J V, Rossi-Bernardi L. Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates. Physiol Rev 1973; 53: 836–90, (23)
  • Kilmartin J V. Interaction of haemoglobin with protons, CO2 and 2,3-diphosphoglycerate. Br Med Bull 1976; 32: 209–12, (29)
  • Kilmartin J V. The Bohr effect of human hemoglobin. Trends in Biochem Sci Nov, 1977; 247–9, (24)
  • Kirschbaum T H. Variability of magnitude of the Bohr effect in human fetal blood. J Appl Physiol 1963; 18: 729–33, (35)
  • Kleihauer E, Braun H, Betke K. Demonstration von fetalem hämoglobin in den erythrocyten eines blutausstrichs. Klin Wochenschr 1957; 35: 637–8, (33)
  • Kleihauer E. The hemoglobins. Perinatal Physiology, U Stave. Plenum Press, New York 1977; 215–39, (32, 119)
  • Kleinman L I, Petering H G, Sutherland J M. Blood carbonic anhydrase activity and zinc concentration in infants with respiratory-distress syndrome. N Engl J Med 1967; 277: 1157–61, (15)
  • Köhne E, Kleihauer E. Beziehungen zwischen polyglobulie und hämoglobinmuster bei neugeborenen mit G trisomie. Klin Wochenschr 1975; 53: 111–6, (119)
  • Körber E. Über differenzen des blutfarbstoffes. MD Thesis, University of Dorpat. 1866, (32, 33)
  • Koshland D E, Némethy G, Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 1966; 5: 365–85, (22)
  • Kravitz H, Elegant L D, Kaiser E, Kagan B M. Methemoglobin values in premature and mature infants and children. Am J Dis Child 1956; 91: 1–5, (15)
  • Lenfant C, Bellingham A J, Detter J C. Physiological factors influencing the hemoglobin affinity for oxygen. Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, M Rørth, P Astrup. Munksgaard, Copenhagen 1972; 736–47, (105)
  • Lichtman M A, Miller D R, Cohen J, Waterhouse C. Reduced red cell glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration, and increased hemoglobin-oxygen affinity caused by hypophosphatemia. Ann Intern Med 1971; 74: 562–8, (103)
  • Lichtman M A, Cohen J, Young J A, Whitbeck A A, Murphy M. The relationship between arterial oxygen flow rate, oxygen binding by hemoglobin and oxygen utilization after myocardial infarction. J Clin Invest 1974a; 54: 501–13, (95, 99, 101)
  • Lichtman M A, Murphy M S, Whitbeck A A, Keaney E A. Oxygen binding to haemoglobin in subjects with hypoproliferative anaemia, with and without chronic renal disease: Role of pH. Br J Haematol 1974b; 27: 439–52, (95, 105)
  • Lorkin P A. Fetal and embryonic haemoglobins. J Med Genet 1973; 10: 50–64, (32)
  • Mann L I, Romney S L. The Bohr effect of fetal hemoglobin. Am J Obstet Gynecol 1968; 101: 520–8, (35)
  • Margaria R, Green A A. The first dissociation constant pK'1, of carbonic acid in hemoglobin solutions and its relation to the existence of a combination of hemoglobin with carbon dioxide. J Biol Chem 1933; 102: 611–34, (25, 28)
  • Marks J, Gairdner D, Roscoe J D. Blood formation in infancy. Part III. Cord blood. Arch Dis Child 1955; 30: 117–20, (15)
  • Marsh W L. Anti-i: A cold antibody defining the Ii relationship in human red cells. Br J Haematol 1961; 7: 200–9, (15)
  • May A. Studies on the oxygen affinity of some abnormal haemoglobins. PhD Thesis, University of London. 1975, (46)
  • McIntosh S. Erythropoietin excretion in the premature infant. J Pediatr 1975; 86: 202–6, (14)
  • Miller W W, Delivoria-Papadopoulos M, Miller L, Oski F A. Oxygen releasing factor in hyperthyroidism. JAMA 1970; 211: 1824–6, (103)
  • Minakami S. Effect of oxygen tension on glycolysis in erythrocytes. Forsvarsmed 1969; 5: 181–6, (92, 103)
  • Minton A P, Imai K. The three-state model: A minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin. Proc Natl Acad Sci USA 1974; 71: 1418–21, (22)
  • Mollison P L. Blood transfusion in clinical medicine. Blackwell Scientific Publications, Oxford 1979; 179–80, (15)
  • Monod J, Wyman J, Changeux J-P. On the nature of allosteric transitions: A plausible model. J Mol Biol 1965; 12: 88–118, (17, 21, 22)
  • Moore T J, Hall N. Kinetics of glucose transfer in adult and fetal human erythrocytes. Pediatr Res 1971; 5: 356–9, (15)
  • Murphy J R, Wengerd M, Kellermeyer R W. Erythrocyte O2 affinity: influence of cell density and in vitro changes in hemoglobin concentration. J Lab Clin Med 1974; 84: 218–24, (30)
  • Neerhout R C. Erythrocyte lipids in the neonate. Pediatr Res 1968; 2: 172–8, (15)
  • Nelson M G, Savage G A, Cooke P J, Lappin T R J. Determination of the oxygen dissociation curve and P50 of whole blood. An evaluation of the Hem-O-Scan and Instrument Laboratory Systems. Am J Clin Pathol 1981; 75: 395–9, (60)
  • Nelson N M, Prod'hom L S, Cherry R B, Smith C A. A further extension of the in vivo oxygen-dissociation curve for the blood of the newborn infant. J Clin Invest 1964; 43: 606–10, (88)
  • Ninnes J R, Kimber R W, McDonald J W D. Erythrocyte 2,3-DPG, ATP and oxygen affinity in hemodialysis patients. Can Med Assoc J 1974; 111: 661–5, (99)
  • Novy M J, Edwards M J, Metcalfe J. Hemoglobin Yakima: II. High blood oxygen affinity associated with compensatory erythrocytosis and normal hemodynamics. J Clin Invest 1967; 46: 1848–54, (115)
  • Novy M J, Frigoletto F D, Easterday C L, Umansky I, Nelson N M. Changes in umbilical-cord blood oxygen affinity after intrauterine transfusions for erythroblastosis. N Engl J Med 1971; 285: 589–95, (101)
  • Novy M J. Alterations in blood oxygen affinity during fetal and neonatal life. Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, M Rørth, P Astrup. Munksgaard, Copenhagen 1972; 696–712, (13)
  • Nute P E, Pataryus H A, Stamatoyannopoulus G. The Gγ and Aγ hemoglobin chains during human fetal development. Am J Hum Genet 1973; 25: 271–6, (32)
  • O'Donnell S, Mandaro R, Schuster T M, Arnone A. X-ray diffraction and solution studies of specifically carbamylated human hemoglobin A. Evidence for the location of a proton- and oxygen-linked chloride binding site at valine 1α. J Biol Chem 1979; 254: 12204–8, (24)
  • Oh W, Arcilla R A, Lind J. In vivo blood oxygen dissociation curve of newborn infants. Biol Neonate 1965; 8: 241–52, (88)
  • Okada Y, Tyuma I, Sugimoto T. Evaluation of Severinghaus' equation and its modification for 2,3-DPG. Jap J Physiol 1977; 27: 135–44, (109)
  • Opalinski A, Beutler E. Creatine, 2,3-diphosphoglycerate and anemia. N Engl J Med 1971; 285: 483–6, (102)
  • Orzalesi M M, Hay W W. The regulation of oxygen affinity of fetal blood. I. In vitro experiments and results in normal infants. Pediatrics 1971; 48: 857–64, (13, 106)
  • Oski F A, Barness L A. Vitamin E deficiency - a hitherto unrecognised cause of anemia in the premature infant. J Pediatr 1965; 67: 1045–6, (Abstract). (16)
  • Oski F A, Smith C, Brigandi E. Red cell metabolism in the premature infant. III. Apparent inappropriate glucose consumption for cell age. Pediatrics 1968; 41: 473–82, (15)
  • Oski F A. Red cell metabolism in the newborn infant. V. Glycolytic intermediates and glycolytic enzymes. Pediatrics 1969; 44: 84–91, (15)
  • Oski F A, Delivoria-Papadopoulos M. The red cell, 2,3-diphosphoglycerate, and tissue oxygen release. J Pediatr 1970; 77: 941–56, (106)
  • Oski F A, Gottlieb A J, Miller W W, Delivoria-Papadopoulos M. The effect of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2,3-diphosphoglycerate and its in vivo consequences. J Clin Invest 1970; 49: 400–7, (101)
  • Oski F A, Naiman J L. Hematological Problems in the Newborn2nd ed. WB Saunders, Philadelphia 1972, (16, 122)
  • Oski F A, Kamazawa M. Metabolism of the erythrocytes of the newborn infant. Semin Hematol 1975; 12: 209–21, (14)
  • Perutz M F. Structure and function of hemoglobin. Harvey Lect 1969; 63: 213–61, (17)
  • Perutz M F. Stereochemistry of cooperative effects in haemoglobin. Nature 1970; 228: 726–39, (17, 21)
  • Perutz M F. Mechanism of denaturation of haemoglobin by alkali. Nature 1974; 247: 341–4, (33)
  • Perutz M F. Hemoglobin structure and respiratory transport. Sci Am 1978; 239(6)68–86, (17, 20)
  • Poyart C, Bursaux E, Guesnon P, Teisseire B. Chloride binding and the Bohr effect of human fetal erythrocytes and HbFII solutions. Pfuegers Arch 1978; 376: 169–75, (35)
  • Rapoport S. Über die bestimmung der glycerinsäure in freier und veresterter form. Biochem Z 1937; 289: 406–10, (44)
  • Rapoport S, Luebering J. The formation of 2,3-diphosphoglycerate in rabbit erythrocytes: the existence of a diphosphoglycerate mutase. J Biol Chem 1950; 183: 507–16, (29)
  • Refsum H E. Spectrophotometric determination of hemoglobin oxygen saturation in hemolyzed whole blood by means of various wavelength combinations. Scand J Clin Lab Invest 1957; 9: 190–3, (51, 58)
  • Ricco G, Mazza U, Turi R M, Pich P G, Camaschella C, Saglio, Bernini L F. Significance of a new type of human fetal hemoglobin carrying a replacement isoleucine → threonine at position 75 (E19) of the γ chain. Hum Genet 1976; 32: 305–13, (32)
  • Riegel K P, Versmold H. Postnatal blood oxygen transport, with special respect to idiopathic respiratory distress syndrome. Bull Physio-path Respir 1973; 9: 1533–48, (13)
  • Riegel K, Versmold H, Windthorst H, Horn K. Thyroxine and red cell 2,3-diphosphoglycerate in the newborn period. Klin Wochenschr 1973; 51: 138–9, (103)
  • Rose Z B. The purification and properties of diphosphoglycerate mutase from human erythrocytes. J Biol Chem 1968; 243: 4810–20, (92)
  • Rose Z B, Liebowitz J. 2,3-diphosphoglycerate phosphatase from human erythrocytes. General properties and activation by anions. J Biol Chem 1970; 245: 3232–41, (92)
  • Rosenthal T B. The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 1948; 173: 25–30, (30)
  • Ross J D. Deficient activity of DPNH-dependent methemoglobin diaphorase in cord blood erythrocytes. Blood 1963; 21: 51–62, (15, 16, 34)
  • Rossi L, Chipperfield J R, Roughton F J W. The effect of temperature on the titration curves of human oxygenated and reduced haemoglobin. Biochem J 1963; 87: 33P, (Abstract). (27)
  • Rossi-Bernardi L, Roughton F J W. The specific influence of carbon dioxide and carbamate compounds on the buffer power and Bohr effects in human haemoglobin solutions. J Physiol (Lond) 1967; 189: 1–29, (26, 28)
  • Rossoff L, Zeldin R, Hew E, Aberman A. Changes in blood P50. Effects on oxygen delivery when arterial hypoxemia is due to shunting. Chest 1980; 77: 142–6, (117)
  • Roughton F J W. Transport of oxygen and carbon dioxide. Handbook of Physiology, Section 3, Vol I, Ch 31, W O Fen, H Rahn. Am Physiol Soc, Washington DC 1964; 767–825, (30)
  • Roughton F J W. Some recent work on the interactions of oxygen, carbon dioxide and haemoglobin. Biochem J 1970; 117: 801–12, (23)
  • Roughton F J W, Severinghaus J W. Accurate determination of O2 dissociation curve of human blood above 98.7% saturation with data on O2 solubility in unmodified human blood from 0d` to 37d`C. J Appl Physiol 1973; 35: 861–9, (22, 88)
  • Rush R W, Keirse M J N C, Howat P, Baum J D, Andersen A B M, Turnbull A C. Contribution of preterm delivery to perinatal mortality. Br Med J 1976; 2(6042)965–8, (67)
  • Rørth M. Hemoglobin interactions and red cell metabolism. MD Thesis. Ser Haematol 1972; 5: 1–104, (23)
  • Schroeder W A, Cua J T, Matsuda G, Fenninger W D. Hemoglobin F1, an acetyl-containing hemoglobin. Biochim Biophys Acta 1962; 63: 532–4, (32)
  • Schroeder W A, Shelton J R, Shelton J B, Cormick J, Jones R T. The amino acid sequence of the γ chain of human fetal hemoglobin. Biochemistry 1963; 2: 992–1008, (32)
  • Schroeder W A, Huisman T H J, Shelton J R, Shelton J B, Kleihauer E F, Dozy A M, Robberson B. Evidence for multiple structural genes for the γ chain of human fetal hemoglobin. Proc Natl Acad Sci USA 1968; 60: 537–44, (32)
  • Schroeder W A, Huisman T H J, Brown A K, Uy R, Bouver N G, Lerch P O, Shelton J R, Shelton J B, Apell G. Postnatal changes in the chemical heterogeneity of human fetal hemoglobin. Pediatr Res 1971; 5: 493–9, (32)
  • Schruefer J J P, Heller C J, Battaglia F C, Hellegers A E. Independence of whole blood and hæmoglobin solution oxygen dissociation curves from hæmoglobin type. Nature 1962; 196: 550–3, (35)
  • Scott G E. A rapid method for obtaining the half saturation tension of small blood samples using a standard Clark electrode system. Br J Haematol 1975; 30: 39–45, (60)
  • Sehgal H L, Sehgal L R, Rosen A L, DeWoskin R, Gould S A, Moss G S. Performance of the oxygen-hemoglobin dissociation analyzer (“Hem-O-Scan”), compared with the IL 282 co-oximeter. Clin Chim Acta 1980; 26: 784, (letter). (60)
  • Seip M. The reticulocyte level, and the erythrocyte production judged from reticulocyte studies, in newborn infants during the first week of life. Acta Paediatr (Stockholm) 1955; 44: 355–69, (15)
  • Sell J E, Petering H G. Carbonic anhydrase from human neonatal erythrocytes. J Lab Clin Med 1974; 84: 369–77, (15)
  • Severinghaus J W. Blood gas calculator. J Appl Physiol 1966; 21: 1108–16, (22, 30, 88)
  • Severinghaus J W. Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 1979; 46: 599–602, (22, 23)
  • Shappell S D, Lenfant C J M. Adaptive, genetic, and iatrogenic alterations of the oxyhemoglobin-dissociation curve. Anesthesiology 1972; 37: 127–39, (101)
  • Sheldon G F, Plzak L F, Watkins G M, Moore F D. Inorganic phosphate and the oxyhemoglobin dissociation curve. Surg Forum 1971; 22: 81–2, (103)
  • Siggaard-Andersen O. Blood acid-base alignment nomogram. Scales for pH, pCO2, base excess of whole blood of different hemoglobin concentrations, plasma bicarbonate, and plasma total-CO2. Scand J Clin Lab Invest 1963; 15: 211–7, (42)
  • Siggaard-Andersen O. An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 1971; 27: 239–45, (42)
  • Siggaard-Andersen O, Salling N. Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. II. Studies on whole blood. Scand J Clin Lab Invest 1971; 27: 361–6, (27)
  • Siggaard-Andersen O, Nørgaard-Pedersen B, Rem J. Hemoglobin pigments. Spectrophotometric determination of oxy-, carboxy-, met-, and sulfhemoglobin in capillary blood. Clin Chim Acta 1972a; 42: 85–100, (58)
  • Siggaard-Andersen O, Salling N, Nørgaard-Pedersen B, Rørth M. Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. III. Comparison of the Bohr effect and the Haldane effect. Scand J Clin Lab Invest 1972b; 29: 185–93, (25, 27)
  • Siggaard-Andersen O. The Acid-Base Status of the Blood. Munksgaard, Copenhagen 1974, (25, 26, 30, 41)
  • Siggaard-Andersen O. Determination and presentation of acid-base data. Contr Nephrol 1980; 21: 128–36, (22, 23)
  • Physico-chemical quantities and units in clinical chemistry. Recommendations 1980. International Federation of Clinical Chemistry and International Union of Pure and Applied Chemistry. Clin Chim Acta 1980; 108: 501F–539F, Siggaard-Andersen O, Durst RA, Mass AHJ (eds) (7)
  • Simáně J. Die polarographische bestimmung des blutsauerstoffes. Proc 1st Int Polarographic Congr. 1951; 781–4, Part 1: (47)
  • Singer K, Chernoff A I, Singer L. Studies on abnormal hemoglobins. I. Their demonstration in sickle cell anemia and other hematological disorders by means of alkali denaturation. II. Their identification by means of the methods of fractional denaturation. Blood 1951; 6: 413–35, (33, 39, 119)
  • Sjölin S. The resistance of red cells in vitro. A study of the osmotic properties, the mechanical resistance and the storage behaviour of red cells of fetuses, children and adults. Acta Paediatr (Stockholm) 1954; 43(Suppl 98)1–92, (15)
  • Smith C A, Nelson N M. The Physiology of the Newborn Infant. Charles C Thomas, Springfield, Illinois 1976, (77, 79, 101)
  • Standl E, Ditzel J. The effect of red cell 2,3-DPG changes induced by diabetic ketoacidosis on parameters of the oxygen dissociation curve in man. Adv Exp Med Biol 1976; 75: 89–95, (88)
  • Stegink L D, Meyer P D, Brummel M C. Human fetal hemoglobin F1. Acetylation status. J Biol Chem 1971; 246: 3001–7, (32)
  • Stockman J A, Garcia J F, Oski F A. The anemia of prematurity. Factors governing the erythropoietin response. N Engl J Med 1977; 296: 647–50, (13)
  • Strang L B, MacLeish M H. Ventilatory failure and right-to-left shunt in newborn infants with respiratory distress. Pediatrics 1961; 28: 17–27, (116)
  • Strang L B. Neonatal respiration. Physiological and clinical studies. Blackwell Scientific Publications, Oxford 1977, (14)
  • Sugerman H J, Davidson D T, Vibul S, Delivoria-Papadopoulos M, Miller L D, Oski F A. The basis of defective oxygen delivery from stored blood. Surg Gynecol Obstet 1970; 131: 733–41, (115)
  • Teisseire B, Teisseire L, Lautier A, Hérigault R, Laurent D. A method of continuous recording on microsamples of the Hb-O2 association curve. I.Technique and direct registration of standard results. Bull Physiopath Respir 1975; 11: 837–51, (64)
  • Thews G. Implications to physiology and pathology of oxygen diffusion at the capillary level. Selective Vulnerability of the Brain in Hypoxaemia, J P Shade, W H McMenemey. Blackwell Scientific Publications, Oxford 1963; 27–35, (115)
  • Thomson J M, Dempsey J A, Chosy L W, Shahidi N T, Reddan W G. Oxygen transport and oxyhemoglobin dissociation during prolonged muscular work. J Appl Physiol 1974; 37: 658–64, (115)
  • Todd D, Lai M C S, Beaven G H, Huehns E R. The abnormal haemoglobins in homozygous α-thalassaemia. Br J Haematol 1970; 19: 27–31, (36)
  • Tomoda Y. Demonstration of foetal erythrocyte by immunofluorescent staining. Nature 1964; 202: 910–1, (34)
  • Torrance J, Jacobs P, Restrepo A, Eschbach J, Lenfant C, Finch C A. Intraerythrocytic adaptation to anemia. N Engl J Med 1970; 283: 165–9, (99)
  • Travis S F, Sugerman H J, Ruberg R L, Dudrick S J, Delivoria-Papadopoulos M, Miller L D, Oski F A. Alterations of red-cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. N Engl J Med 1971; 285: 763–8, (103)
  • Travis S F, Kumar S P, Delivoria-Papadopoulos M. Red cell metabolic alterations in postnatal life in term infants: Possible control mechanisms. Pediatr Res 1981; 133–7, (103)
  • Tuchinda S, Nagai K, Lehmann H. Oxygen dissociation curve of hemoglobin Portland 1. FEBS Letts 1975; 49: 390–1, (37)
  • Turek Z, Kreuzer F, Hoofd L J C. Advantage or disadvantage of a decrease of blood oxygen affinity for tissue oxygen supply at hypoxia. A theoretical study comparing man and rat. Pfluegers Arch 1973; 342: 185–97, (116)
  • Tyuma I, Shimizu K. Effect of organic phosphates on the difference in oxygen affinity between fetal and adult human hemoglobin. Fed Proc 1970; 29: 1112–4, (34, 106)
  • Tyuma I, Imai K, Shimizu K. Analysis of oxygen equilibrium of hemoglobin and control mechanism of organic phosphates. Biochemistry 1973; 12: 1491–8, (88)
  • Van Assendelft O W. Spectrophotometry of haemoglobin derivatives. Royal Vangorum, AssenThe Netherlands 1970; 55–8, (59)
  • Vanuxem D, Fornaris E, Delpierre S, Grimaud Ch. Role de l'equilibre acido-basique dans les modifications de l'affinité de l'hémoglobine pour l'oxygène dans l'hypoxémie artérielle. Bull Physiopath Respir 1975; 11: 305–14, (96)
  • Nelson: Textbook of Pediatrics11th ed, V C Vaughan, III, R J McKay, R E Behrman. WB Saunders Co, Philadelphia 1979, (42)
  • Versmold H, Seifert G, Riegel K P. Blood oxygen affinity in infancy: the interaction of fetal and adult hemoglobin, oxygen capacity, and red cell hydrogen ion and 2,3-diphosphoglycerate concentration. Respir Physiol 1973a; 18: 14–25, (13, 95, 96, 106)
  • Versmold H, Horn K, Windthorst H, Riegel K P. The rapid postnatal increase of red cell 2,3-diphosphoglycerate: its relation to plasma thyroxine. Respir Physiol 1973b; 18: 26–33, (82, 103)
  • Versmold H T, Linderkamp C, Döhlemann C, Riegel K P. Oxygen transport in congenital heart disease: influence of fetal hemoglobin, red cell pH, and 2,3-diphosphoglycerate. Pediatr Res 1976; 10: 566–70, (95, 96, 97, 101, 106)
  • Waddell W J, Butler T C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO). Application to skeletal muscle of the dog. J Clin Invest 1959; 38: 720–9, (43)
  • Waddell W J, Bates R G. Intracellular pH. Physiol Rev 1969; 49: 285–329, (43)
  • Weiss R R, Roginsky M S, Mann L I, Melber A, Bachorik J, Tejani N, Bhakthavathsalan A, Evans M I. Erythrocyte 2,3-diphosphoglycerate in normal and hypertensive gravid women and their newborn infants. Am J Obstet Gynecol 1976; 124: 692–6, (82)
  • Wells R M G. The oxygen affinity of chicken haemoglobin in whole blood and erythrocyte suspensions. Respir Physiol 1976; 27: 21–31, (47)
  • Wenner J. Blood oxygen tension determination for the recognition of hypoxia in newborn babies and older infants. Acta Paediatr (Stockholm) 1960; 49: 734–40, (115, 116)
  • Whaun J M, Oski F A. Red cell stromal adenosine triphosphate (ATPase) of newborn infants. Pediatr Res 1969; 3: 105–12, (15)
  • Manual of symbols and terminology for physicochemical quantities and units. IUPAC, Division of Physical Chemistry, Commission on symbols, terminology, and units. 1978 edition. Pure Appl Chem 1979; 51: 1–41, Whiffen DH (ed). (7)
  • White J C, Beaven G H. A review of the varieties of human haemoglobin in health and disease. J Clin Path 1954; 7: 175–200, (33)
  • Wilson M G, Schroeder W A, Graves D A, Kach V D. Hemoglobin variation in D-trisomy syndrome. N Engl J Med 1967; 277: 953–8, (119)
  • Wimberley P D, Whitehead M D, Huehns E R. The effect of acidosis on red cell 2,3-DPG and oxygen affinity of whole foetal blood. Adv Exp Med Biol 1978; 94: 463–7, (7)
  • Wood W G, Stamatoyannopoulos G, Lim G, Nute P E. F-cells in the adult normal values and levels in individuals with hereditary and acquired elevations of HbF. Blood 1975; 46: 671–82, (34)
  • Woodson R D, Wranne B, Detter J C. Effect of osmotic shrinking and swelling of red cells on whole blood oxygen affinity. Scand J Clin Lab Invest 1974; 33: 261–7, (30)
  • Woodson R D. Physiological significance of oxygen dissociation curve shifts. Crit Care Med 1979; 7: 368–73, (116, 117)
  • Wranne B, Woodson R D, Detter J C. Bohr effect: interaction between H+, CO2, and 2,3-DPG in fresh and stored blood. J Appl Physiol 1972; 32: 749–54, (27)
  • Wyman J. Linked functions and reciprocal effects in hemoglobin: a second look. Adv Protein Chem 1964; 19: 223–86, (27)
  • Zipursky A, Pollock J, Neelands P, Chown B, Israels L G. The transplacental passage of fetal red blood-cells and the pathogenesis of Rh immunisation during pregnancy. Lancet 1963; ii: 489–93, (33)
  • Zipursky A. The erythrocytes of the newborn infant. Semin Hematol 1965; 2: 167–203, (14)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.