25
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Relaxing effects of cyclic GMP and cyclic AMP-enhancing agents on the long-lasting contraction to endothelin-1 in the porcine coronary artery

, &
Pages 625-634 | Published online: 08 Jul 2009

REFERENCES

  • Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27 — 36.
  • Yanagisawa MH, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells [see com-ments]. Nature 1988; 332: 411 — 5.
  • Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T. Endothelium-derived novel vasocon-strictor peptide endothelin: a possible endogenous agonist for voltage-dependent Ca2+ channels. In Morad M, Nayler W, Kazada S, Schramm M, edi-tors. The calcium channel: structure function and implications. Berlin/Heidelberg: Springer-Verlag, 1988: 575–83.
  • Wagner Mann C, Sturek M. Endothelin mediates Ca influx and release in porcine coronary smooth muscle cells Am J Physiol 1991; 260: C771 —7.
  • Kodama M, Kanaide H, Abe S, Hirano K, Kai H, Nakamura M. Endothelin-induced Ca-indepen-dent contraction of the porcine coronary artery. Biochem Biophys Res Commun 1989; 160: 1302 — 8.
  • Abe Y, Kasuya Y, Kudo M, Yamashita K, Goto K, Masaki T, Takuwa Y. Endothelin- 1-induced phos-phorylation of the 20-kDa myosin light chain and caldesmon in porcine coronary artery smooth muscle. Jpn J Pharmacol 1991; 57: 431 — 5.
  • Wang QD, Li XS, Lundberg JM, Pernow J. Protective effects of non-peptide endothelin receptor antagonist bosentan on myocardial ischaemic and reperfusion injury in the pig. Cardiovasc Res 1995; 29: 805–12.
  • Vegesna RV, Diamond J. Elevation of cyclic AMP by prostacyclin is accompanied by relaxation of bovine coronary arteries and contraction of rabbit aortic rings. Eur J Pharmacol 1986; 128: 25 — 31.
  • Kelly RA, Smith TW. Nitric oxide and nitrovaso-dilators: similarities, differences, and interactions. Am J Cardiol 1996; 77: 2C — 7C.
  • Goldberg ND, O'Dea RF, Haddox MK. Cyclic GMP. Adv Cyclic Nucleotide Res 1973; 3: 155 —223.
  • Napoli SA, Gruetter CA, Ignarro LJ, Kadowitz PJ. Relaxation of bovine coronary arterial smooth muscle by cyclic GMP, cyclic AMP and analogs. J Pharmacol Exp Ther 1979; 212: 469–73.
  • Opie LH. Calcium channel antagonist in the treatment of coronary artery disease: fundamental pharmacological properties relevant to clinical use. Prog Cardiovasc Dis 1996; 38: 273–90.
  • Kai H, Kanaide H, Matsumoto T, Shogakiuchi Y, Nakamura M. Adenosine decreases intracellular free calcium concentrations in cultured vascular smooth muscle cells from rat aorta. FEBS Lett 1987; 212: 119–22.
  • Walter U, Waldmann R, Nieberding M. Intra-cellular mechanism of action of vasodilators. Eur Heart J 1988; 9 Suppl H: 1 — 6.
  • Pagani ED, Buchholz RA, Silver PJ. Cardiovascu-lar cyclic nucleotide phosphodiesterases and their role in regulating cardiovascular function. Basic Res Cardiol 1992; 87 Supp. 1: 73 — 86.
  • Lindgren S, Andersson KE. Effects of selective phosphodiesterase inhibitors on isolated coronary, lung and renal arteries from man and rat. Acta Phy-siol Scand 1991; 142: 77 — 82.
  • Chen XL, Rembold CM. Cyclic nucleotide-depen-dent regulation of Mn2 + influx, [Ca2 +]i, and arterial smooth muscle relaxation. Am J Physiol 1992; 263: C468 — 73.
  • Xiong Z, Sperelakis N. Regulation of L-type calcium channels of vascular smooth muscle cells. J Mol Cell Cardiol 1995; 27: 75–91.
  • Twort CH, van Breemen C. Cyclic guanosine monophosphate-enhanced sequestration of Ca2 + by sarcoplasmic reticulum in vascular smooth mus-cle. Circ Res 1988; 62: 961–4.
  • Rashatwar SS, Cornwell TL, Lincoln TM. Effects of 8-bromo-cGMP on Ca2 + levels in vascular smooth muscle cells: possible regulation of Ca2+ - ATPase by cGMP-dependent protein kinase. Proc Natl Acad Sci USA. 1987; 84: 5685 —9.
  • Conti MA, Adelstein RS. The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic sub-unit of 3':5' cAMP-dependent protein kinase. J Biol Chem 1981; 256: 3178 — 81.
  • de Lanerolle P, Nishikawa M, Yost DA, Adelstein RS. Increased phosphorylation of myosin light chain kinase after an increase in cyclic AMP in intact smooth muscle. Science 1984; 223: 1415 — 7.
  • Yanagisawa T, Kawada M, Taira N. Nitroglycerin relaxes canine coronary arterial smooth muscle without reducing intracellular Ca2 + concentra-tions measured with fura-2. Br J Pharmacol 1989; 98: 469 — 82.
  • Opgaard OS, Adner M, Gulbenkian S, Edvinsson L. Localization of endothelin immunoreactivity and demonstration of constrictory endothelin-A receptors in human coronary arteries and veins. J Cardiovasc Pharmacol 1994; 23: 576 — 83.
  • Kalsner S. Cholinergic mechanisms in human cor-onary artery preparations: implications of species differences. J Physiol Lond 1985; 358: 509 — 26.
  • Absood A, Chen D, Hakanson R. Neuropeptides of the vasoactive intestinal peptide/helodermin/ pituitary adenylate cyclase activating peptide family elevate plasma cAMP in mice: comparison with a range of other regulatory peptides. Regul Pept 1992; 40: 311 — 22.
  • Seo B, Liischer TF. ETA and ETB receptors med-iate contraction to endothelin-1 in renal artery of aging SHR. Effects of FR139317 and bosentan. Hypertension 1995; 25: 501 — 6.
  • Ohbayashi A, Hiraga T, Okubo M, Murase T, Matsushita H, Hara M. Characteristics of porcine coronary artery endothelial cells in culture: com-parison with aortic endothelium. Biochem Biophys Res Commun 1994; 202: 504–11.
  • Highsmith RF, Blackburn K, Schmidt DJ. Endothelin and calcium dynamics in vascular smooth muscle. Annu Rev Physiol 1992; 54: 257 — 77.
  • Hubel CA, Highsmith RF. Endothelin-induced changes in intracellular pH and Ca2 + in coronary smooth muscle: role of Na(+)-H + exchange. Bio-chem J 1995; 310: 1013 — 20.
  • Fitton A, Benfield P. Isradipine. A review of its pharmacodynamic and pharmacokinetic proper-ties, and therapeutic use in cardiovascular disease. Drugs 1990; 40: 31–74.
  • McTavish D, Sorkin EM. Verapamil. An updated review of its pharmacodynamic and pharmacoki-netic properties, and therapeutic use in hyperten-sion. Drugs 1989; 38: 19 — 76.
  • Omland T, Bonarjee VV, Aakvaag A, Aarsland T, Dickstein K. The relationship between early plasma atrial natriuretic factor levels and exercise performance after myocardial infarction. Eur Heart J 1993; 14: 1022 — 6.
  • Oye BK, Hoff P, Skadberg B, Tronstad A, Myking 0, Aakvaag A. Atrial natriuretic peptide from the coronary sinus is acutely increased following induc-tion of paroxysmal tachycardia. JACC 1989; 13: 177A.
  • Dewar ML, Walsh G, Chiu RC, Kochamba G, Gutkowska J, Genest J, Cantin M. Atrial natriure-tic factor: response to cardiac operation. J Thorac Cardiovasc Surg 1988; 96: 266–70.
  • Espiner EA, Nicholls MG, Yandle TG, Crozier IG, Cuneo RC, McCormick D, Ikram H. Studies on the secretion, metabolism and action of atrial natriure-tic peptide in man. J Hypertens Suppl 1986; 4: S85 — 91.
  • Kawasaki J, Kobayashi S, Miyagi Y, Nishimura J, Fujishima M, Kanaide H. The mechanisms of the relaxation induced by vasoactive intestinal peptide in the porcine coronary artery. Br J Pharmacol 1997; 121: 977–85.
  • Fukuizumi Y, Kobayashi S, Nishimura J, Kanaide H. The effects of calcitonin gene-related peptide on the cytosolic calcium concentration and force in the porcine coronary artery. J Pharmacol Exp Ther 1996; 278: 220–31.
  • Nakashima M, Morrison KJ, Vanhoutte PM. Hyperpolarization and relaxation of canine vascu-lar smooth muscle to vasoactive intestinal polypep-tide. J Cardiovasc Pharmacol 1997; 30: 273–7.
  • Jiang H, Colbran JL, Francis SH, Corbin JD. Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J Biol Chem 1992; 267: 1015 — 9.
  • Waldman SA, Murad F. Atrial natriuretic peptides: receptors and second messengers. Bioessays 1989; 10: 16–9.
  • Laurenza A, Sutkowski EM, Seamon KB. Forsko-lin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Forskolin: a specific stimulator of adenylyl cyclase or a diter-pene with multiple sites of action? Trends Pharma-col Sci 1989; 10: 442 — 7.
  • Polson JB, Strada SJ. Cyclic nucleotide phospho-diesterases and vascular smooth muscle. Annu Rev Pharmacol Toxicol 1996; 36: 403 — 27.
  • Lincoln TM, Cornwell TL, Taylor AE. cGMP-dependent protein kinase mediates the reduction of Ca2 + by cAMP in vascular smooth muscle cells. Am J Physiol 1990; 258: C399 —407.
  • Lincoln TM, Cornwell TL. Towards an under-standing of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxa-tion. Blood Vessels 1991; 28: 129 — 37.
  • Kawada T, Toyosato A, Islam MO, Yoshida Y, Imai S. cGMP-kinase mediates cGMP- and cAMP-induced Ca2+ desensitization of skinned rat artery. Eur J Pharmacol 1997; 323: 75 — 82.
  • Polson JB. Cyclic nucleotide phosphodiesterases. Possible targets for new drugs. J Fla Med Assoc 1990; 77: 1045 — 6.
  • Lindgren S, Rascon A, Andersson KE, Manganiello V, Degerman E. Selective inhibition of cGMP-inhibited and cGMP-noninhibited cyclic nucleotide phosphodiesterases and relaxation of rat aorta. Biochem Pharmacol 1991; 42: 545 —52.
  • Suzuki S, Kajikuri J, Suzuki A, Itoh T. Effects of endothelin-1 on endothelial cells in the porcine coronary artery. Circ Res 1991; 69: 1361 — 8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.