35
Views
10
CrossRef citations to date
0
Altmetric
Review

Gut peptide hormones: Importance for food intake

, &
Pages 250-258 | Received 16 Jun 2004, Accepted 27 Aug 2004, Published online: 08 Jul 2009

References

  • Hetherington AW, Ransom SW. Hypothalamic lesions and adiposity in the rat. Anat Rec 1940;78:149–72.
  • Anand BK, Brobeck JR. Hypothalamic control of food intake in rats and cats. Yale J Biol Med 1951;24:123–40.
  • Blevins JE, Schwartz MW, Baskin DG. Peptide signals regulating food intake and energy homeostasis. Can J Physiol Pharmacol 2002;80:396–406.
  • MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 2002;13:5–11.
  • Guerre-Millo M. Adipose tissue and adipokines: for better or worse. Diabetes Metab 2004;30:13–9.
  • Grill HJ, Norgren R. Chronically decerebrate rats demonstrate satiation but not bait-shyness. Science 1978;201: 267–9.
  • Raybould HE. Does your gut taste? Sensory transduction in the gastrointestinal tract. News Physiol Sci 1998;13:275–80.
  • Bray GA. Afferent signals regulating food intake. Proc Nutr Soc 2000;59:373–84.
  • Rindi G, Necchi V, Savio A, Torsello A, Zoli M, Locatelli V, et al. Characterisation of gastric ghrelin cells in man and other mammals: Studies in adult and fetal tissues. Histo-chem Cell Biol 2002;117:511–9.
  • Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001;50:1714–9.
  • Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yosimoto A, Harada M, et al. Ghrelin strongly stimulates growth hormone (GH) release in hummans. J Clin Endocrinol metab 2000;85:4908–11.
  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656–60.
  • Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000;407:908–13.
  • Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, et al. A role for ghrelin in the central regulation of feeding. Nature 2001;409:194–8.
  • Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 2001;50: 2438—43.
  • Riediger T, Traebert M, Schmid HA, Scheel C, Lutz TA, Scharrer E. Site-specific effects of ghrelin on the neuronal activity in the hypothalamic arcuate nucleus. Neurosci Lett 2003;341:151–5.
  • Jhanwar-Uniyal M, Beck B, Jhanwar YS, Burlet C, Leibowitz SF. Neuropeptide Y projection from arcuate nucleus to parvocellular division of paraventricular nucleus: Specific relation to the ingestion of carbohydrate. Brain Res 1993;631:97–106.
  • Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999;20:68–100.
  • Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001;86: 5992—5.
  • Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, et al. Elevated plasma ghrelin levels in Prader-Willi syndrome. Nat Med 2002;8:643–4.
  • DelParigi A, Tschop M, Heiman ML, Salbe AD, Vozarova B, Sell SM, et al. High circulating ghrelin: A potential cause for hyperphagia and obesity in Prader-Willi syndrome. J Clin Endocrinol Metab 2002;87:5461–4.
  • Faraj M, Havel PJ, Phelis S, Blank D, Sniderman AD, Cianflone K. Plasma acylation-stimulating protein, adipo-nectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 2003;88:1594–602.
  • Hanusch-Enserer U, Brabant G, Roden M. Ghrelin concentrations in morbidly obese patients after adjustable gastric banding. N Engl J Med 2003;348:2159–60.
  • Edholm T, Levin F, Hellström PM, Schmidt PT. Ghrelin stimulates motility in the small intestine through intrinsic cholinergic neeurons. Regul Pept 2004;121:25–30.
  • Tschöp M, Viswanath D, Weyer C, Tataranni PA, Ravussin E, Meimann ML. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001;50:707–9.
  • Kirchgessner AL. Orexins in the brain-gut axis. Endocr Rev 2002;23:1–15.
  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli R, Tanaka H, et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92:573–85.
  • Kirchgessner AL, Liu M. Orexin synthesis and response in the gut. Neuron 1999;24:941–51.
  • Näslund E, Ehrström M, Ma J, Hellström PM, Kirchgessner AL. Localization and effects of orexin on fasting motility in the rat duodenum. Am J Physiol 2002;282: G470–9.
  • Nowak KW, Mackowiak P, Switonska MM, Fabis M, Malendowicz LK. Acute orexin effects on insulin secretion in the rat: In vivo and in vitro studies. Life Sci 2000;66: 449–54.
  • Ouedrago R, Näslund E, Kirchgessner AL. Glucose regulates the release of orexin-A from the endocrine pancreas. Diabetes 2003;52:111–7.
  • Burdyga G, Lal S, Spiller D, Jiang W, Thompson D, Attwood S, et al. Localization oforexin-1 receptors to vagal afferent neurons in the rat and humans. Gastroenterology 2003;124:129–39.
  • Komaki G, Matsumoto Y, Nishikata H, Kawai K, Nozaki T, Takii M, et al. Orexin-A and leptin change inversely in fasting non-obese subjects. Eur J Endocrinol 2001;144: 645–51.
  • Adam JA, Menheere PP, van Dielen FM, Soeters PB, Buurman WA, Greve JW. Decreased plasma orexin-A levels in obese individuals. Int J Obes Relat Metab Disord 2002;26:274–6.
  • Buchan AM, Polak JM, Solcia E, Capella C, Hudson D, Pearse AG. Electron immunohistochemical evidence for human intestinal I cells as the source of CCK. Gut 1978; 19:403–7.
  • Kissileff HR, Pi-Sunyer X, Thornton J, Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr 1981;34:154–60.
  • Stacher G, Steinringer H, Schmierer C, Schneider C, Winklehner S. Cholecystokinin octapeptide decreases intake of solid food in man. Peptides 1982;3:133–6.
  • West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 1984;246:R776–87.
  • Ballinger A, McLoughlin L, Medback S, Clark M. Chole-cystokinin is a satiety hormone in humans at physiological post-prandial concentrations. Clin Sci 1995;89:375–81.
  • Lieverse RJ, Jansen JB, Masclee AA, Lamers CB. Satiety effects of a physiological dose of cholecystokinin in humans. Gut 1995;36:176–9.
  • Peikin SR. Role of cholecystokinin in the control of food intake. Gastrointest Endocrinol 1989;18:757–75.
  • Plata-Salaman CR. Regulation of hunger and satiety in man. Dig Dis Sci 1991;9:253–68.
  • Reidelberger RD, O’Rourke MF. Potent cholecystokinin antagonist L 364718 stimulates food intake in rats. Am J Physiol 1989;257:R1512–8.
  • Hewson G, Leighton RG, Hughes J. The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of the action of endogenous cholecystokinin. Br J Pharmacol 1988;93: 79–84.
  • Reidelberger RD, Varga G, Solomon TE. Effects of selective cholecystokinin antagonists L364,718 and L365,260 on food intake in rats. Peptides 1991;12: 1215–21.
  • Mercer JG, Lawrence CB. Selectivity of cholecystokinin (CCK) receptor antagonists, MK-329 and L-365260, for axonally-transported CCK binding sites on the rat vagus nerve. Neurosci Lett 1992;137:229–31.
  • Reubi JC, Waser B, Läderach U, Stettler C, Friess H, Halter F, et al. Localization of cholecystokinin A and cholecystokinin B-gastrin receptors in the human stomach. Gastroenterology 1997;112:1197–205.
  • Geiselman PJ. Control of food intake. Endocrinol Metab Clin North Am 1996;25:815–29.
  • French SJ, Murry B, Rumsey RD, Sepple CP, Read NW. Is cholecystokinin a satiety hormone? Correlations of plasma cholecystokinin with hunger, satiety, and gastric emptying in normal volunteers. Appetite 1991;21:95–104.
  • Emond M, Schwartz GJ, Ladenheim EE, Moran TH. Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 1999;276:R1545–9.
  • Matson CA, Reid DF, Ritter RC. Daily CCk injection enhances reduction of body weight by chronic intracereb-roventricular leptin infusion. Am J Physiol 2001;282: R1368–73.
  • Lin L, Thomas SR, Kilroy L, Schwartz GJ, York DA. Enterostatin inhibition of dietary fat intake is dependent on CCK-A receptors. Am J Physiol 2003;285:R321–8.
  • Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 1983;302:716–8.
  • Holst JJ. Enteroglucagon. Ann Rev Physiol 1997;59:257–71.
  • Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Truncated GLP-1 (proglucagon 87–107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993;38:665–73.
  • Näslund E, Bogefors J, Skogar S, Grybäck P, Jacobsson H, Holst JJ, et al. Glucagon-like peptide-1 slows solid gastric emptying with inhibition of insulin, C-peptide, glucagon and peptide YY release in humans. Am J Physiol 1999;277: R910–6.
  • Ørskov C. Glucagon-like peptide-1, a new hormone of the enteroinsular axis. Diabetologia 1992;35:701–11.
  • Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Ørskov C, Ritzel R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997;273:E981–8.
  • Imeryüz N, Yegen BC, Bozkurt A, Coskun T, Villanueva-Penacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol 1997;273:G920–7.
  • Wettergren A, Wøjdemann M, Meisner S, Stadil F, Holst JJ. The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7–36 amide on gastric acid secretions in humans depends on an intact vagal innervation. Gut 1997;40:597–601.
  • Wettergren A, Wøjdemann M, Holst JJ. Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am J Physiol 1998;275: G984–92.
  • Tolessa T, Gutniak M, Holst JJ, Efendic S, Hellström PM. Glucagon-like peptide-1 retards gastric emptying and small bowel transit in the rat: Effect mediated through central or enteric nervous mechanisms. Dig Dis Sci 1998;43: 2284–90.
  • Jin SLC, Han VKM, Simmons JG, Towle AC, Lauder JM, Lund PK. Distribution of glucagon-like peptide-1 (GLP-1), glucagon, and glicentin in the rat brain. J Comp Neurol 1988;271:519–32.
  • Shimizu I, Hirota M, Ohboshi C, Shima K. Identification and localization of the glucagon-like peptide-1 and its receptor in rat brain. Endocrinology 1987;121:1076–82.
  • Kreymann B, Ghatei MA, Burnet P, Williams G, Kanse S, Diani AR, et al. Characterization of glucagon-like peptide-1-(7–36)amide in the hypothalamus. Brain Res 1989;502: 325–31.
  • Lambert PD, Wilding PH, Ghatei MA, Bloom SR. A role for GLP-1-(7–36)NH2 in the central control of feeding behaviour. Digestion 1994;54:360–1.
  • Tang-Christensen M, Larsen PJ, Göke R, Fink-Jensen A, Jessop DS, MøllerM, et al. Central administration ofGLP-1-(7–36) amide inhibits food and water intake in rats. Am J Physiol 1996;271:R848–56.
  • Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CMB, Meeran K, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;385:69–72.
  • Bloom SR. Glucagon-like peptide-1 and satiety. Nature 1997;385:214.
  • Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide-1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998;101:515–20.
  • Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon-like peptide-1: A potent regulator of food intake in humans. Gut 1999;44:81–6.
  • Flint A, Raben A, Rehfeld JF, Holst JJ, Astrup A. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int J Obes 2000;24: 288–98.
  • Gutzwiller JP, Drewe J, Göke B, Schmidt H, Rohrer B, Lareida J, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999;276:R1541–4.
  • Toft-Nielsen MB, Madsbad S, Holst JJ. Continuous subcutaneous infusion of glucagon-like peptide-1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 1999;22: 1137–43.
  • Näslund E, Gutniak M, Skogar S, Rössner S, Hellström PM. Glucagon-like peptide-1 (GLP-1) increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr 1998;68: 525–30.
  • Näslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 in obese men. Int J Obes 1999;23: 304–11.
  • Grybäck P, Hellström PM, Jacobsson H, Backman L. Gastric emptying of solids in humans: Improved evaluation by Kaplan-Meier plots, with special reference to obesity and gender. Eur J Nucl Med 1996;23:1562–7.
  • Ranganath LR, Beety JM, Morgan LM, Wright JW, Howland R, Marks V. Attenuated GLP-1 secretion in obesity: Cause or consequence. Gut 1996;38:916–9.
  • Näslund E, Grybäck P, Backman L, Jacobsson H, Holst JJ, Theodorsson E, et al. Small bowel gut hormones: Correlation to fasting antroduodenal motility and gastric emptying. Dig Dis Sci 1998;43:945–52.
  • Ranganath L, Norris F, Morgan L, Wright J, Marks V. Inhibition of carbohydrate-mediated glucagon-like peptide-1 (7–36)amide secretion by circulating non-esterified fatty acids. Clin Sci 1999;96: 335–42.
  • Clement K, Dina C, Basdevant A, Chastang N, Pelloux V, Lahlou N, et al. A sib-pair analysis study of 15 candidate genes in French families with morbid obesity: Indication for linkage with islet 1 locus on chromosome 5q. Diabetes 1999;48:398–402.
  • Tsai CH, Hill M, Drucker DJ. Biological determinants of intestinotrophic properties of GLP-2. Am J Physiol 1997; 272:G662–8.
  • Lovshin J, Drucker DJ. New frontiers in the biology of GLP-2. Regul Pept 2000;90:27–32.
  • Wøjdemann M, Wettergren A, Hartmann B, Holst JJ. Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol 1998;33: 828–32.
  • Tang-Christensen M, Larsen PJ, Thulesen J, Rømer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 2000;6: 802–7.
  • Schmidt PT, Näslund E, Grybäck P, Jacobsson H, Hartmann B, Holst JJ, et al. Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul Pept 2003;116:21–5.
  • Sørensen LB, Flint A, Raben A, Hartmann B, Holst JJ, Astrup A. No effect of physiological concentrations of glucagon-like peptide-2 on appetite and energy intake in normal weight subjects. Int J Obes Relat Metab Disord 2003;27: 450–6.
  • Dakin CL, Small CJ, Batterham RL, Neary NM, Cohen MA, Patterson M, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004;145:2687–95.
  • Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 2003;88:4696–701.
  • Morley JE, Levine AS, Grace M, Kneip J. Peptide YY (PYY), a potent orexigenic agent. Brain Res 1985;341: 200–3.
  • Hagan MM. Peptide YY: A key mediator of orexigenic behavior. Peptides 2002;23:377–82.
  • Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3–36. N Engl J Med 2003;349: 941–8.
  • Batterham RL. Gut hormone PYY3–36 physiologically inhibits food intake. Nature 2002;418:650–4.
  • Clark JT, Kalra PS, Crowley WR, Kalra SP. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984;115:427–9.
  • Stanley BG, Leibowitz SF. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci 1984;35:2635–42.
  • Levine AS, Morley JE. Neuropeptide Y: A potent inducer of consummatory behavior in rats. Peptides 1984; 5:1025–9.
  • Poggioli R, Vergoni AV, Bertolini A. ACTH-(1–24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonists. Peptides 1986;7: 843–8.
  • Fan W, Boston BA, Kesterson R, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997;385:165–8.
  • Schiöth HB. The physiological role of melanocortin receptors. Vitam Horm 2001;63:195–232.
  • Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998;95:15043–8.
  • Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature 1998;1:271–2.
  • Broberger C, Landry M, Wong H, Walsh J, Hökfelt T Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in proopiomelanocortin and neuropeptide Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology 1997;66:393–408.
  • Fuxe K, Tinner B, Caberlotto L, Bunnemann B, Agnati L. NPY Y1 receptor like immunoreactivity exists in a subpopulation of b-endorphin immunoreactive nerve cells in the arcuate nucleus: a double immunolabelling analysis in the rat. Neurosci Lett 1997;225: 49–52.
  • Porte D Jr, Baskin DG, Schwartz MW. Leptin and insulin action in the central nervous system. Nutr Rev 2002;60: S20–9.
  • Näslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ, et al. Glucagon-like peptide-1 decreases feelings of hunger and suppresses energy intake in obese humans. Int J Obes Relat Metab Disord 1999;23: 304–11.
  • Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002;359:824–30.
  • Näslund E, King N, Mansten S, Adner N, Holst JJ, Gutniak M, et al. Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects. Br J Nutr 2004;91: 1–9.
  • Taylor IL, Feldman M, Richardson CT, Walsh JH. Gastric and cephalic stimulation of human pancreatic polypeptide release. Gastroenterology 1978;75:432–7.
  • Hilsted J, Galbo H, Sonne B, Schwartz T, Fahrenkrug J, de Muckadell OB, et al. Gastroenteropancreatic hormonal changes during exercise. Am J Physiol 1980;239:G136–40.
  • Batterham RL, Le Roux CW, Cohen MA, Park AJ, Ellis SM, Patterson M, et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 2003;88:3989–92.
  • Poeschla B, Gibbs J, Simansky KJ, Greenberg D, Smith GP. Cholecystokinin-induced satiety depends on activation of 5-HT1C receptors. Am J Physiol 1993;264:R62–4.
  • Asakawa A, Inui A, Kaga T, Katsuura G, Fujimiya M, Fujino MA, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut 2003;52: 947–52.
  • Holst B, Cygankiewicz A, Jensen TH, Ankersen M, Schwartz TW. High constitutive signaling of the ghrelin receptor: Identification of a potent inverse agonist. Mol Endocrinol 2003;17:2201–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.