84
Views
15
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Elevated insulin-like growth factor 1 receptor, hepatocyte growth factor receptor and telomerase protein expression in mild ulcerative colitis

, , , , , , & show all
Pages 289-298 | Received 01 Jul 2007, Published online: 08 Jul 2009

References

  • Tulassay Z Gastroenterology Guide Book (Gasztroenterológiai Útmutató). Medition, 2005.
  • Lakatos L, Mester G, Erdelyi Z, Balogh M, Szipocs I, Kamaras G, et al. Striking elevation in incidence and prevalence of inflammatory bowel disease in a province of western Hungary between 1977 and 2001. World J Gastroenterol 2004; 10: 404–9
  • Lakatos L, Mester G, Erdelyi Z, David G, Pandur T, Balogh M, et al. Risk factors for ulcerative colitis-associated colorectal cancer in a Hungarian cohort of patients with ulcerative colitis: results of a population-based study. Inflamm Bowel Dis 2006; 12: 205–11
  • Levine AD. Apoptosis: Implications for inflammatory bowel disease. Inflamm Bowel Dis 2000; 6: 191–205
  • Ding X, Hiraku Y, Ma N, Kato T, Saito K, Nagahama M, et al. Inducible nitric oxide synthase-dependent DNA damage in mouse model of inflammatory bowel disease. Cancer Sci 2005; 96: 157–63
  • Lakatos L, Mester G, Erdelyi Z, David G, Pandur T, Balogh M, et al. A colorectális rák rizikófaktorai colitis ulcerosás betegekben populációs alapú vizsgálat eredményei alapján. Orv Hetil 2006; 147: 175–81
  • Dignass AU, Sturm A. Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol 2001; 13: 763–70
  • Noffsinger A, Unger B, Fenoglio-Preiser CM. Increased cell proliferation characterizes Crohn's disease. Mod Pathol 1998; 11: 1198–203
  • Werner H, Karnieli E, Rauscher FJ, LeRoith D. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci 1996; 93: 8318–23
  • Dean M, Park M, Le Beau MM, Robins TS, Diaz MO, Rowley JD, et al. The human met oncogene is related to the tyrosine kinase oncogenes. Nature 1985; 318: 385–8
  • Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci 1987; 84: 6379–83
  • Dignass AU, Lynch-Devaney K, Podolosky K. Hepatocyte growth factor/scatter factor modulates intestinal epithelial cell proliferation and migration. Biochem Biophys Res Com 1994; 202: 701–9
  • Giordano S, Ponzetto C, Di Renzo MF, Cooper CS, Comoglio PM. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature 1989; 339: 155–6
  • Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 1991; 6: 501–4
  • Takahashi M, Ota S, Shimada T, Hamada E, Kawabe T, Okudaira T, et al. Hepatocyte growth factor is the most potent endogenous stimulant of rabbit gastric epithelial cell proliferation and migration in primary culture. J Clin Invest 1995; 95: 1994–2003
  • Kanda H, Tajima H, Lee GH, Nomura K, Ohtake K, Matsumoto K, et al. Hepatocyte growth factor transforms immortalized mouse liver epithelial cells. Oncogene 1993; 8: 3047–53
  • Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, et al. The Semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biol 2002; 4: 720–4
  • Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1995; 1: 147–54
  • Liu C, Park M, Tsao MS. Overexpression of c-met proto-oncogene but not epidermal growth factor receptor or c-erbB-2 in primary human colorectal carcinomas. Oncogene 1992; 7: 181–5
  • Prat M, Narsimhan RP, Crepaldi T, Nicotra MR, Natali PG, Comoglio PM. The receptor encoded by the human c-MET oncogene is expressed in hepatocytes, epithelial cells and solid tumors. Int J Cancer 1991; 49: 323–8
  • Kipling D. The Telomere. Oxford University Press, Oxford 1995
  • Kipling D. Telomerase: Immortality enzyme or oncogene?. Nature Genet 1995; 9: 104–6
  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature 1999; 40: 464–8
  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992; 11: 1921–9
  • Greider CW. Telomere length regulation. Ann Rev Biochem 1996; 65: 337–65
  • Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB, et al. A mammalian telomerase-associated protein. Science 1997; 275: 973–7
  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–15
  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90: 785–95
  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 955–9
  • Nakayama J, Saito M, Nakamura H, Matsuura A, Ishikawa F. TLP1: A gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 1997; 88: 875–84
  • Sipos F, Molnar B, Zagoni T, Berczi L, Tulassay Z. Growth in epithelial cell proliferation and apoptosis correlates specifically to the inflammation activity of inflammatory bowel diseases: Ulcerative colitis shows specific p53- and EGFR expression alterations. Dis Colon Rectum 2005; 48: 775–86
  • El Yafi F, Winkler R, Delvenne P, Boussif N, Belaiche J, Louis E. Altered expression of type I insulin-like growth factor receptor in Crohn's disease. Clin Exp Immunol 2005; 139: 526–33
  • Zeeh JM, Ennes HS, Hoffmann P, Procaccino F, Eysselein VE, Snape WJ, Jr, et al. Expression of insulin-like growth factor I receptors and binding proteins by colonic smooth muscle cells. Am J Physiol 1997; 272: G481–7
  • Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 2002; 62: 200–7
  • Chowdhury A, Fukuda R, Fukumoto S. Growth factor mRNA expression in normal colorectal mucosa and in uninvolved mucosa from ulcerative colitis patients. J Gastroenterol 1996; 31: 353–60
  • Kitamura S, Kondo S, Shinomura Y, Isozaki K, Kanayama S, Higashimoto Y, et al. Expression of hepatocyte growth factor and c-met in ulcerative colitis. Inflamm Res 2000; 49: 320–4
  • Tahara Y, Ido A, Yamamoto S, Miyata Y, Uto H, Hori T, et al. Hepatocyte growth factor facilitates colonic mucosal repair in experimental ulcerative colitis in rats. J Pharmacol Exp Ther 2003; 307: 146–51
  • Engelhardt M, Drullinsky P, Guillem J, Moore MA. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res 1997; 3: 1931–41
  • Holzmann K, Klump B, Weis-Klemm M, Hsieh CJ, Borchard F, Gregor M, et al. Telomerase activity in long-standing ulcerative colitis. Anticancer Res 2000; 20: 3951–5
  • Kleideiter E, Friedrich U, Mohring A, Walker S, Horing E, Maier K, et al. Telomerase activity in chronic inflammatory bowel disease. Dig Dis Sci 2003; 48: 2328–32
  • Kolquist KA, Ellisen LW, Counter CM, Meyerson M, Tan LK, Weinberg RA, et al. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nature Genet 1998; 19: 182–6
  • Myung SJ, Yang SK, Chang HS, Byeon JS, Kim KJ, Hong SS, et al. Clinical usefulness of telomerase for the detection of colon cancer in ulcerative colitis patients. J Gastroenterol Hepatol 2005; 20: 1578–83
  • Usselmann B, Newbold M, Morris AG, Nwokolo CU. Deficiency of colonic telomerase in ulcerative colitis. Am J Gastroenterol 2001; 96: 1106–12
  • Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y. Colorectal cancer: Genetics of development and metastasis. J Gastroenterol 2006; 41: 185–92
  • Artandi SE, Attardi LD. Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochem Biophys Res Commun 2005; 331: 881–90
  • Alrawi SJ, Schiff M, Carroll RE, Dayton M, Gibbs JF, Kulavlat M, et al. Aberrant crypt foci. Anticancer Res 2006; 26: 107–19
  • Cheng L, Lai MD. Aberrant crypt foci as microscopic precursors of colorectal cancer. World J Gastroenterol 2003; 9: 2642–9
  • Goodman JE, Hofseth LJ, Hussain SP, Harris CC. Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease. Environ Mol Mutagen 2004; 44: 3–9
  • Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2001; 2: 149–56
  • Rao CV. Nitric oxide signaling in colon cancer chemoprevention. Mutat Res 2004; 555: 107–19
  • Yagihashi N, Kasajima H, Sugai S, Matsumoto K, Ebina Y, Morita T, et al. Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch 2000; 436: 109–14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.