214
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Role of microRNA-223 in the regulation of poly(ADP-ribose) polymerase in pediatric patients with Crohn’s disease

ORCID Icon, , , , , , , , , , , & ORCID Icon show all
Pages 1066-1073 | Received 02 Jun 2018, Accepted 04 Jul 2018, Published online: 09 Oct 2018

References

  • Levine A, Koletzko S, Turner D, et al. The ESPGHAN Revised Porto Criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2013;58:1–806.
  • Muller KE, Lakatos PL, Arato A, et al. Incidence, Paris classification, and follow-up in a nationwide incident cohort of pediatric patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2013;57:576–582.
  • Perrin JM, Kuhlthau K, Chughtai A, et al. Measuring quality of life in pediatric patients with inflammatory bowel disease: psychometric and clinical characteristics. J Pediatr Gastroenterol Nutr. 2008;46:164–171.
  • Kim SC, Ferry GD. Inflammatory bowel diseases in pediatric and adolescent patients: clinical, therapeutic, and psychosocial considerations. Gastroenterology. 2004;126:1550–1560.
  • Baldassano RN, Piccoli DA. Inflammatory bowel disease in pediatric and adolescent patients. Gastroenterol Clin N Am. 1999;28:445–458.
  • Rigoli L, Caruso RA. Inflammatory bowel disease in pediatric and adolescent patients: a biomolecular and histopathological review. WJG. 2014;20:10262–10278.
  • Grover Z, Muir R, Lewindon P. Exclusive enteral nutrition induces early clinical, mucosal and transmural remission in paediatric Crohn's disease. J Gastroenterol. 2014;49:638–645.
  • Gardiner KR, Anderson NH, Rowlands BJ, et al. Colitis and colonic mucosal barrier dysfunction. Gut. 1995;37:530–535.
  • Jijon HB, Churchill T, Malfair D, et al. Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis. Am J Physiol Gastrointest Liver Physiol. 2000;279:G641–G651.
  • Xie F, Sun S, Xu A, et al. Advanced oxidation protein products induce intestine epithelial cell death through a redox-dependent, c-jun N-terminal kinase and poly (ADP-ribose) polymerase-1-mediated pathway. Cell Death Dis. 2014;5:e1006.
  • Ventham NT, Kennedy NA, Nimmo ER, et al. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology. 2013;145:293–308.
  • Streppel MM, Pai S, Fau-Campbell NR, et al. MicroRNA 223 is upregulated in the multistep progression of Barrett's esophagus and modulates sensitivity to chemotherapy by targeting PARP1. Clin Cancer Res. 2013;19:4067–4078.
  • Cuzzocrea S, Mazzon E, Genovese T, et al. Role of poly(ADP-ribose) glycohydrolase in the development of inflammatory bowel disease in mice. Free Radic Biol Med. 2007;42:90–105.
  • Mazzon E, Dugo L, Li JH, et al. GPI 6150, a PARP inhibitor, reduces the colon injury caused by dinitrobenzene sulfonic acid in the rat. Biochem Pharmacol. 2002;64:327–337.
  • Zingarelli B, O'Connor M, Hake PW. Inhibitors of poly (ADP-ribose) polymerase modulate signal transduction pathways in colitis. Eur J Pharmacol. 2003;469:183–194.
  • Hyams JS, Ferry GD, Mandel FS, et al. Development and validation of a pediatric Crohn's disease activity index. J Pediatr Gastroenterol Nutr. 1991;12:449–447.
  • Bhaskara VK, Challa S, Panigrahi M, et al. Differential PARP cleavage: an indication for existence of multiple forms of cell death in human gliomas. Neurol India. 2009;57:264–268.
  • Froelich CJ, Hanna WL, Poirier GG, et al. Granzyme B/perforin-mediated apoptosis of Jurkat cells results in cleavage of poly(ADP-ribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment. Biochem Biophys Res Commun. 1996;227:658–665.
  • Weşierska-Gadek J, Bugajska-Schretter A, Löw-Baselli A, et al. Cleavage of poly(ADP-ribose) transferase during p53-independent apoptosis in rat liver after treatment with N-nitrosomorpholine and cyproterone acetate. Mol Carcinog. 1999;24:263–275.
  • Beres NJ, Kiss Z, Sztupinszki Z, et al. Altered mucosal expression of microRNAs in pediatric patients with inflammatory bowel disease. Dig Liver Dis. 2017;49:378–387.
  • El-Hamoly T, Hegedus C, Lakatos P, et al. Activation of poly(ADP-ribose) polymerase-1 delays wound healing by regulating keratinocyte migration and production of inflammatory mediators. Mol Med. 2014;20:363–371.
  • Virag L. 50 years of poly(ADP-ribosyl)ation. Mol Aspects Med. 2013;34:1043–1045.
  • Markowitz MM, Rozen P, Pero RW, et al. Hydrogen peroxide induced adenosine diphosphate ribosyl transferase (ADPRT) response in patients with inflammatory bowel disease. Gut. 1988;29:1680–1686.
  • Decker P, Briand JP, Fau-de Murcia G, et al. Zinc is an essential cofactor for recognition of the DNA binding domain of poly(ADP-ribose) polymerase by antibodies in autoimmune rheumatic and bowel diseases. Arthritis Rheum. 1988;41:918–926.
  • Reumaux D, Meziere C, Colombel JF, et al. Distinct production of autoantibodies to nuclear components in ulcerative colitis and in Crohn's disease. Clin Immunol Immunopathol. 1995;77:349–357.
  • Roda G, Jharap B, Neeraj N, et al. Loss of response to anti-TNFs: definition, epidemiology, and management. Clin Trans Gastroenterol. 2016;7:e135.
  • Chowers Y, Sturm A, Sans M, et al. Report of the ECCO workshop on anti-TNF therapy failures in inflammatory bowel diseases: biological roles and effects of TNF and TNF antagonists. J Crohn's Colitis. 2010;4:367–376.
  • Brown KA, Brown GA, Lewis SM, et al. Targeting cytokines as a treatment for patients with sepsis: a lost cause or a strategy still worthy of pursuit? Int Immunopharmacol. 2016;36:291–299.
  • Prattis S, Jurjus A. Spontaneous and transgenic rodent models of inflammatory bowel disease. Lab Anim Res. 2015;31:47–68.
  • Tegtmeyer D, Seidl \M, Gerner P, et al. IBD due to PID: inflammatory bowel disease caused by primary immunodeficiencies – clinical presentations, review of literature, and proposal of a rational diagnostic algorithm. Pediatr Allergy Immunol. 2017;28:412–429.
  • Stilmann M, Hinz M, Arslan SC, et al. A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Mol Cell. 2009;36:365.
  • McCool K, Miyamoto S. A PAR-SUMOnious mechanism of NEMO activation. Mol Cell. 2009;36:349–350.
  • Thomas S, Mercado JM, DuHadaway J, et al. Novel colitis immunotherapy targets Bin1 and improves colon cell barrier function. Dig Dis Sci. 2016;61:423–432.
  • Pyndiah S, Tanida S, Fau-Ahmed KM, et al. c-MYC suppresses BIN1 to release poly(ADP-ribose) polymerase 1: a mechanism by which cancer cells acquire cisplatin resistance. Sci Signal. 2011;4:ra19.
  • Christopher AF, Kaur RP, Kaur G, et al. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res. 2016;7:68–74.
  • Meloche J, Le Guen M, Potus F, et al. miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol. 2015;309:C363–C372.
  • Wang HL, Chao K, Ng SC, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol. 2016;17:58.
  • Forsythe RM, Xu DZ, Lu Q, et al. Lipopolysaccharide-induced enterocyte-derived nitric oxide induces intestinal monolayer permeability in an autocrine fashion. Shock. 2002;17:180–184.
  • Bocker U, Yezerskyy O, Fau-Feick P, et al. Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis. 2003;18:25–32.
  • Rosenstiel P, Sina C, End C, et al. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J Immunol (Baltimore, MD: 1950). 2007;178:8203–8211.
  • Wang H, Zhang S, Fau-Yu Q, et al. Circulating MicroRNA223 is a new biomarker for inflammatory bowel disease. Medicine (Baltimore). 2016;95:e2703.
  • Noren Hooten N, Abdelmohsen K, Gorospe M, et al. microRNA expression patterns reveal differential expression of target genes with age. PLoS One. 2010;5:e10724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.