298
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Detection of a novel antigen for Crohn’s disease

ORCID Icon, , , , , , & show all
Pages 1427-1433 | Received 23 May 2021, Accepted 19 Aug 2021, Published online: 06 Sep 2021

References

  • Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–2778.
  • Inflammatory Bowel Disease Group, Chinese Society of Gastroenterology, Chinese Medical Association. Chinese consensus on diagnosis and treatment in inflammatory bowel disease (2012, Guangzhou). Chin J Dig. 2012;32(12):796–813.
  • Saxon A, Shanahan F, Landers C, et al. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol. 1990;86(2):202–210.
  • Main J, McKenzie H, Yeaman GR, et al. Antibody to Saccharomyces cerevisiae (Bakers' yeast) in Crohn's disease. BMJ 1988;297(6656):1105–1106.
  • Zhou G, Song Y, Yang W, et al. ASCA, ANCA, ALCA and many more: are they useful in the diagnosis of inflammatory bowel disease? Dig Dis. 2016;34(1–2):90–97.
  • Dubinsky M, Braun J. Diagnostic and prognostic microbial biomarkers in inflammatory bowel diseases. Gastroenterology. 2015;149(5):1265–1274.
  • Prideaux L, De Cruz P, Ng SC, et al. Serological antibodies in inflammatory bowel disease: a systematic review. Inflamm Bowel Dis. 2012;18(7):1340–1355.
  • Reese GE, Constantinides VA, Simillis C, et al. Diagnostic precision of anti-Saccharomyces cerevisiae antibodies and perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Am J Gastroenterol. 2006;101(10):2410–2422.
  • Joossens S, Reinisch W, Vermeire S, et al. The value of serologic markers in indeterminate colitis: a prospective follow-up study. Gastroenterology. 2002;122(5):1242–1247.
  • Lawrance IC, Murray K, Hall A, et al. A prospective comparative study of ASCA and pANCA in Chinese and Caucasian IBD patients. Am J Gastroenterology. 2004;99(11):2186–2194.
  • Cader MZ, Kaser A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut. 2013;62(11):1653–1664.
  • Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–1499.
  • Hermon-Taylor J, Bull T. Crohn's disease caused by Mycobacterium avium subspecies paratuberculosis: a public health tragedy whose resolution is long overdue. J Med Microbiol. 2002;51(1):3–6.
  • Kruiningen HJV, Chiodini RJ, Thayer WR, et al. Experimental disease in infant goats induced by a Mycobacterium isolated from a patient with Crohn's disease. A preliminary report. Digest Dis Sci. 1986;31(12):1351–1360.
  • Autschbach F, Eisold S, Hinz U, et al. High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn's disease. Gut. 2005;54(7):944–949.
  • Sanderson JD, Moss MT, Tizard ML, et al. Mycobacterium paratuberculosis DNA in Crohn's disease tissue. Gut. 1992;33(7):890–896.
  • Naser SA, Schwartz D, Shafran I. Isolation of Mycobacterium avium subsp paratuberculosis from breast milk of Crohn's disease patients. Am J Gastroenterol. 2000;95(4):1094–1095.
  • El-Zaatari F, Hermon-Taylor J, Tizard M, et al. Characterization of IS900 loci in Mycobacterium avium subsp. paratuberculosis and development of multiplex PCR typing. Microbiology. 2000;146(9):2185–2197.
  • Verdier J, Deroche L, Allez M, et al. Specific IgG response against Mycobacterium avium paratuberculosis in children and adults with Crohn's disease[J]. PLoS One. 2013;8(5):e62780.
  • Suenaga K, Yokoyama Y, Nishimori I, et al. Serum antibodies to Mycobacterium paratuberculosis in patients with Crohn's disease. Dig Dis Sci. 1999;44(6):1202–1207.
  • Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537–544.
  • Chitale S, Ehrt S, Kawamura I, et al. Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol. 2001;3(4):247–254.
  • Casali N, Konieczny M, Schmidt MA, et al. Invasion activity of a Mycobacterium tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun. 2002;70(12):6846–6852.
  • Haile Y, Caugant DA, Bjune G, et al. Mycobacterium tuberculosis mammalian cell entry operon (mce) homologs in Mycobacterium other than tuberculosis (MOTT). FEMS Immunol Med Microbiol. 2002;33(2):125–132.
  • Arruda S, Bomfim G, Knights R, et al. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 1993;261(5127):1454–1457.
  • Timms VJ, Hassan KA, Mitchell HM, et al. Comparative genomics between human and animal associated subspecies of the Mycobacterium avium complex: a basis for pathogenicity. BMC Genomics. 2015;16(1):695.
  • Parker SL, Tsai YL, Palmer CJ. Comparison of PCR-generated fragments of the mce gene from Mycobacterium tuberculosis, M. avium, M. intracellulare, and M. scrofulaceum. Clin Diagn Lab Immunol. 1995;2(6):770–775.
  • El-Shazly S, Ahmad S, Mustafa AS, et al. Internalization by HeLa cells of latex beads coated with mammalian cell entry (mce) proteins encoded by the mce3 operon of Mycobacterium tuberculosis. J Med Microbiol. 2007;56(Pt 9):1145–1151.
  • Saini N, Sharma M, Chandolia A, et al. Characterization of Mce4A protein of Mycobacterium tuberculosis: role in invasion and survival. BMC Microbiol. 2008;8(1):200.
  • Forrellad M, Bianco M, Blanco F, et al. Study of the in vivo role of Mce2R, the transcriptional regulator of mce2 operon in Mycobacterium tuberculosis. BMC Microbiol. 2013;13(1):200.
  • Brown-Elliott BA, Brown JM, Conville PS, et al. Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev. 2006;19(2):259–282.
  • Jimenez T, Diaz AM, Zlotnik H. Monoclonal antibodies to Nocardia asteroides and Nocardia brasiliensis antigens. J Clin Microbiol. 1990;28(1):87–91.
  • Abreu C, Rocha-Pereira N, Sarmento A, et al. Nocardia infections among immunomodulated inflammatory bowel disease patients: a review. World J Gastroenterol. 2015;21(21):6491–6498.
  • Wu G, Nie L, Zhang W. Predicted highly expressed genes in Nocardia farcinica and the implication for its primary metabolism and nocardial virulence. Antonie Van Leeuwenhoek. 2006;89(1):135–146.
  • Ishikawa J, Yamashita A, Mikami Y, et al. The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A. 2004;101(41):14925–14930.
  • Luo Q, Hiessl S, Poehlein A, et al. Insights into the microbial degradation of rubber and gutta-percha by analysis of the complete genome of Nocardia nova SH22a. Appl Environ Microbiol. 2014;80(13):3895–3907.
  • Ji X, Tan X, Hou X, et al. Cloning, expression, invasion, and immunological reactivity of a mammalian cell entry protein encoded by the mce1 operon of Nocardia farcinica. Front Microbiol. 2017;8:281–2816.
  • Gonzalez-Carrillo C, Millan-Sauceda C, Gerardo Lozano-Garza H, et al. Genomic changes associated with the loss of Nocardia brasiliensis virulence in mice after 200 in vitro Passages. Infect Immun. 2016;84(9):2595–2606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.