395
Views
3
CrossRef citations to date
0
Altmetric
Review

Application of next-generation sequencing in the diagnosis of gastric cancer

, & ORCID Icon
Pages 842-855 | Received 22 Sep 2021, Accepted 08 Feb 2022, Published online: 16 Mar 2022

References

  • Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019;14(1):26–38.
  • Sexton RE, Al Hallak MN, Diab M, et al. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev. 2020;39(4):1179–1203.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Washington MK, Goldberg RM, Chang GJ, WHO Classification of Tumours Editorial Board, et al. Diagnosis of digestive system tumours. Int J Cancer. 2021;148(5):1040–1050.
  • Nagtegaal ID, Odze RD, Klimstra D, WHO Classification of Tumours Editorial Board, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76(2):182–188.
  • de Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–615.
  • Pormohammad A, Ghotaslou R, Leylabadlo HE, et al. Risk of gastric cancer in association with Helicobacter pylori different virulence factors: a systematic review and meta-analysis. Microbial Pathogenesis. 2018;118:214–219.
  • Ignatova E, Seriak D, Fedyanin M, et al. Epstein-Barr virus-associated gastric cancer: disease that requires special approach . Gastric Cancer. 2020;23(6):951–960.
  • Chen Y-C, Fang W-L, Wang R-F, et al. Clinicopathological variation of lauren classification in gastric cancer. Pathol Oncol Res. 2016;22(1):197–202.
  • Hu B, El Hajj N, Sittler S, et al. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012;3(3):251–261.
  • Wang Q, Liu G, Hu C. Molecular classification of gastric adenocarcinoma. Gastroenterol Res. 2019;12(6):275–282.
  • Wang F-H, Shen L, Li J, et al. The Chinese society of clinical oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun (Lond). 2019;39(1):1–31.
  • Verma R, Sharma PC. Next generation sequencing-based emerging trends in molecular biology of gastric cancer. Am J Cancer Res. 2018;8(2):207–225.
  • Biesecker LG, Shianna KV, Mullikin JC. Exome sequencing: the expert view. Genome Biol. 2011;12(9):128.
  • Belkadi A, Bolze A, Itan Y, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;112(17):5473–5478.
  • Retterer K, Juusola J, Cho MT, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696–704.
  • Iglesias A, Anyane-Yeboa K, Wynn J, et al. The usefulness of whole-exome sequencing in routine clinical practice. Genet Med. 2014;16(12):922–931.
  • Tan TY, Dillon OJ, Stark Z, et al. Diagnostic impact and cost-effectiveness of Whole-Exome sequencing for ambulant children with suspected monogenic conditions. JAMA Pediatr. 2017;171(9):855–862.
  • Best S, Wou K, Vora N, et al. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn. 2018;38(1):10–19.
  • Ghazani AA, Oliver NM, St. Pierre JP, et al. Assigning clinical meaning to somatic and germ-line whole-exome sequencing data in a prospective cancer precision medicine study. Genet Med. 2017;19(7):787–795.
  • Shi W, Ng CKY, Lim RS, et al. Reliability of Whole-Exome sequencing for assessing intratumor genetic heterogeneity. Cell Rep. 2018;25(6):1446–1457.
  • Schneider BP, Stout LA, Philips S, et al. Implications of incidental germline findings identified in the context of clinical whole exome sequencing (WES) for guiding cancer therapy. J Clin Oncol. 2019;37(15_suppl):1581–1581.
  • Zare F, Dow M, Monteleone N, et al. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data. BMC Bioinformatics. 2017;18(1):1–13.
  • Koeppel F, Blanchard S, Jovelet C, et al. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS ONE. 2017;12(11):e0188174.
  • Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344–347.
  • Nones K, Waddell N, Wayte N, et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014;5(1):1–9.
  • van El CG, Cornel MC, Borry P, on behalf of the ESHG Public and Professional Policy Committee, et al. Whole-genome sequencing in health care. Recommendations of the European society of human genetics. Eur J Hum Genet. 2013;21(6):580–585.
  • Trost B, Walker S, Wang Z, et al. A comprehensive workflow for read depth-based identification of copy-number variation from whole-genome sequence data. Am J Human Genet. 2018;102(1):142–155.
  • Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 2018;109(3):513–522.
  • Meienberg J, Bruggmann R, Oexle K, et al. Clinical sequencing: is WGS the better WES? Hum Genet. 2016;135(3):359–362.
  • Mattick JS, Dinger M, Schonrock N, et al. Whole genome sequencing provides better diagnostic yield and future value than whole exome sequencing. Med J Aust. 2018;209(5):197–199.
  • Carss K, Arno G, Erwood M, et al. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am J Human Genet. 2016;100(1):75–90.
  • Davies H, Morganella S, Purdie CA, et al. Whole-Genome sequencing reveals breast cancers with mismatch repair deficiency. Cancer Res. 2017;77(18):4755–4762.
  • Greer SU, Nadauld LD, Lau BT, et al. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases. Genome Med. 2017;9(1):1–17.
  • Cavalcante GC, Marinho ANR, Anaissi AK, et al. Whole mitochondrial genome sequencing highlights mitochondrial impact in gastric cancer. Sci Rep. 2019;9(1):1–13.
  • Neiman M, Taylor DR. The causes of mutation accumulation in mitochondrial genomes. Proceedings of the Royal Society. Proc Biol Sci. 2009;276(1660):1201–1209.
  • Stefania W, Angelo P, Stefania T. Mitochondria and familial predisposition to breast cancer. Curr Genomics. 2013;14(3):195–203.
  • Saranathan R, Levi MH, Wattam AR, et al. Helicobacter pylori infections in the Bronx, New York: surveying antibiotic susceptibility and strain lineage by whole-genome sequencing. J Clin Microbiol. 2020;58(3):e01591–e01519.
  • Camargo MC, Bowlby R, Chu A, et al. Validation and calibration of next-generation sequencing to identify Epstein-Barr virus-positive gastric cancer in the cancer genome atlas. Gastric Cancer. 2016;19(2):676–681.
  • Bustos-Carpinteyro AR, Oliveira C, Sousa A, et al. CDH1 somatic alterations in mexican patients with diffuse and mixed sporadic gastric cancer. BMC Cancer. 2019;19(1):1–9.
  • Kuboki Y, Yamashita S, Niwa T, et al. Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Ann Oncol. 2016;27(1):127–133.
  • Mafficini A, Amato E, Fassan M, et al. Reporting tumor molecular heterogeneity in histopathological diagnosis. PLoS ONE. 2014;9(8):e104979.
  • Vecchi M, Nuciforo P, Romagnoli S, et al. Gene expression analysis of early and advanced gastric cancers. Oncogene. 2007;26(29):4284–4294.
  • Marimuthu A, Jacob HKC, Jakharia A, et al. Gene expression profiling of gastric cancer. J Proteomics Bioinform. 2011;4(4):74–82.
  • Sun H. Identification of key genes associated with gastric cancer based on DNA microarray data. Oncol Lett. 2016;11(1):525–530.
  • Chu Y, Corey DR. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Ther. 2012;22(4):271–274.
  • Heo YJ, Park C, Yu D, et al. Reproduction of molecular subtypes of gastric adenocarcinoma by transcriptome sequencing of archival tissue. Sci Rep. 2019;9(1):9675.
  • Wu J, Zhao X, Shao Z. A system level analysis of gastric cancer across tumor stages with RNA-seq data. Mol BioSyst. 2015;11(7):1925–1932.
  • Fu K, Hui B, Wang Q, et al. Single-cell RNA sequencing of immune cells in gastric cancer patients. Aging (Albany, NY). 2020;12(3):2747–2763.
  • Singh BP, Gupta VK. Molecular markers in mycology. Switzerland: Springer International Publishing; 2017.
  • Xiao W, Wu L, Yavas G, et al. Challenges, solutions, and quality metrics of personal genome assembly in advancing precision medicine. Pharmaceutics. 2016;8(2):15.
  • Kumar S, Krishnani KK, Bhushan B, et al. Metagenomics: retrospect and prospects in high throughput age. Biotechnol Res Int. 2015;2015:1–13.
  • Rizzato C, Torres J, Obazee O, et al. Variations in cag pathogenicity island genes of Helicobacter pylori from Latin American groups may influence neoplastic progression to gastric cancer. Sci Rep. 2020;10(1):6570.
  • Rizzato C, Torres J, Plummer M, et al. Variations in Helicobacter pylori cytotoxin-associated genes and their influence in progression to gastric cancer: implications for prevention. PLoS ONE. 2012;7(1):e29605.
  • Zheng Z, Andersson AF, Ye W, et al. A method for metagenomics of Helicobacter pylori from archived formalin-fixed gastric biopsies permitting longitudinal studies of carcinogenic risk. PloS One. 2011;6(10):e26442.
  • Sohn S-H, Kim N, Jo HJ, et al. Analysis of gastric body microbiota by pyrosequencing: possible role of bacteria other than Helicobacter pylori in the gastric carcinogenesis. J Cancer Prev. 2017;22(2):115–125.
  • Sung J, Kim N, Kim J, et al. Comparison of gastric microbiota between gastric juice and mucosa by next generation sequencing method. J Cancer Prev. 2016;21(1):60–65.
  • Eun CS, Kim BK, Han DS, et al. Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter. 2014;19(6):407–416.
  • Hu Z, Cheng L, Wang H. The Illumina-Solexa sequencing protocol for bacterial genomes. In: Mengoni A, Galardini M, Fondi M, editors. Bacterial pangenomics: methods and protocols. New York (NY): Springer New York; 2015. p. 91–97.
  • Pettersson E, Lundeberg J, Ahmadian A. Generations of sequencing technologies. Genomics. 2009;93(2):105–111.
  • Asakawa Y, Okabe A, Fukuyo M, et al. Epstein-Barr virus-positive gastric cancer involves enhancer activation through activating transcription factor 3. Cancer Sci. 2020;111(5):1818–1828.
  • Ito T, Matoba R, Maekawa H, et al. Detection of gene mutations in gastric cancer tissues using a commercial sequencing panel. Mol Clin Oncol. 2019;11(5):455–460.
  • Castaño-Rodríguez N, Goh K-L, Fock KM, et al. Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep. 2017;7(1):15957.
  • Qi Y, Ooi HS, Wu J, et al. MALAT1 long ncRNA promotes gastric cancer metastasis by suppressing PCDH10. Oncotarget. 2016;7(11):12693–12703.
  • Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55(4):641–658.
  • Esser D, Holze N, Haag J, et al. Interpreting whole genome and exome sequencing data of individual gastric cancer samples. BMC Genomics. 2017;18(1):517.
  • Nagarajan N, Bertrand D, Hillmer AM, et al. Whole-genome reconstruction and mutational signatures in gastric cancer. Genome Biol. 2012;13(12):R115.
  • Ribeiro-dos-Santos Â, Khayat AS, Silva A, et al. Ultra-deep sequencing reveals the microRNA expression pattern of the human stomach. PLoS ONE. 2010;5(10):e13205.
  • Crosetto N, Mitra A, Silva MJ, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods. 2013;10(4):361–365.
  • Alarcón T, Llorca L, Perez-Perez G. Impact of the microbiota and gastric disease development by Helicobacter pylori. In: Tegtmeyer N, Backert S, editors. Molecular pathogenesis and signal transduction by Helicobacter pylori. Cham: Springer International Publishing; 2017. p. 253–275.
  • Levene MJ, Korlach J, Turner SW, et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 2003;299(5607):682–686.
  • Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–138.
  • Huang KK, Huang J, Wu JKL, et al. Long-read transcriptome sequencing reveals abundant promoter diversity in distinct molecular subtypes of gastric cancer. Genome Biol. 2021;22(1):44.
  • Watanabe Y, Oikawa R, Kodaka Y, et al. Cancer-related genetic variants of Helicobacter pylori strains determined using gastric wash-based whole-genome analysis with single-molecule real-time technology. Int J Cancer. 2021;148(1):178–192.
  • Sohn BH, Hwang J-E, Jang H-J, et al. Clinical significance of four molecular subtypes of gastric cancer identified by the cancer genome atlas project. Clin Cancer Res. 2017;23(15):4441–4449.
  • Yang Q, Zhu C, Zhang Y, et al. Molecular analysis of gastric cancer identifies genomic markers of drug sensitivity in Asian gastric cancer. J Cancer. 2018;9(16):2973–2980.
  • Johansson H, Isaksson M, Sörqvist EF, et al. Targeted resequencing of candidate genes using selector probes. Nucleic Acids Res. 2011;39(2):e8.
  • Li J, Lupat R, Amarasinghe KC, et al. CONTRA: copy number analysis for targeted resequencing. Bioinformatics. 2012;28(10):1307–1313.
  • Nadauld LD, Garcia S, Natsoulis G, et al. Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol. 2014;15(8):428.
  • Myllykangas S, Buenrostro JD, Natsoulis G, et al. Efficient targeted resequencing of human germline and cancer genomes by oligonucleotide-selective sequencing. Nat Biotechnol. 2011;29(11):1024–1027.
  • Ikari N, Serizawa A, Mitani S, et al. Near-comprehensive resequencing of cancer-associated genes in surgically resected metastatic liver tumors of gastric cancer. Am J Pathol. 2019;189(4):784–796.
  • Banerjee J, Mishra N, Dhas Y. Metagenomics: a new horizon in cancer research. Meta Gene. 2015;5:84–89.
  • Gunathilake M, Lee J, Choi IJ, et al. Alterations in gastric microbial communities are associated with risk of gastric cancer in a korean population: a case-control study. Cancers. 2020;12(9):2619.
  • Hu Y-L, Pang W, Huang Y, et al. The gastric microbiome is perturbed in advanced gastric adenocarcinoma identified through shotgun metagenomics. Front Cell Infect Microbiol. 2018;8(433):1–11.
  • Seol M, Lee YR, Kim KM, et al. The difference of the gut microbiota of gastric cancer in relation to Helicobacter pylori negativity and positivity. J Clin Oncol. 2019;37(4_suppl):10–10.
  • Shiroma Y, Takahashi R-U, Yamamoto Y, et al. Targeting DNA binding proteins for cancer therapy. Cancer Sci. 2020;111(4):1058–1064.
  • Leili Sadeghi A, Ali B, Alireza R, et al. An overview of the epigenetic modifications of gene expression in tumorigenesis. Res Mol Med (RMM). 2019;6(3):1–9.
  • Zhang Y, Yu C. Distinct expression and prognostic values of the replication protein a family in gastric cancer. Oncol Lett. 2020;19(3):1831–1841.
  • Shi S, Zhang Z-G. Role of Sp1 expression in gastric cancer: a meta-analysis and bioinformatics analysis. Oncol Lett. 2019;18(4):4126–4135.
  • Fassan M, Baffa R, Kiss A. Advanced precancerous lesions within the GI tract: the molecular background. Best Pract Res Clin Gastroenterol. 2013;27(2):159–169.
  • Li X, Zheng N-R, Wang L-H, et al. Proteomic profiling identifies signatures associated with progression of precancerous gastric lesions and risk of early gastric cancer. eBioMedicine. 2021;74:103714.
  • Fassan M, Simbolo M, Bria E, et al. High-throughput mutation profiling identifies novel molecular dysregulation in high-grade intraepithelial neoplasia and early gastric cancers. Gastric Cancer. 2014;17(3):442–449.
  • Zhang Y, Wu X, Zhang C, et al. Dissecting expression profiles of gastric precancerous lesions and early gastric cancer to explore crucial molecules in intestinal-type gastric cancer tumorigenesis. J Pathol. 2020;251(2):135–146.
  • Nakamura Y, Shitara K, Lee J. The right treatment of the right patient: Integrating genetic profiling into clinical decision making in advanced gastric cancer in asia. Am Soc Clin Oncol Educ Book. 2021;(41):1–e73.
  • Horgan D, Curigliano G, Rieß O, et al. Identifying the steps required to effectively implement next-generation sequencing in oncology at a national level in Europe. JPM. 2022;12(1):72.
  • Zhou J, Zhao W, Wu J, et al. Neoantigens derived from recurrently mutated genes as potential immunotherapy targets for gastric Cancer. Biomed Res Int. 2019;2019:8103142.
  • Zhang J, Qiu W, Liu H, et al. Genomic alterations in gastric cancers discovered via whole-exome sequencing. BMC Cancer. 2018;18(1):1270.
  • Pan X, Ji X, Zhang R, et al. Landscape of somatic mutations in gastric cancer assessed using next-generation sequencing analysis . Oncol Lett. 2018;16(4):4863–4870.
  • Ge S, Li B, Li Y, et al. Genomic alterations in advanced gastric cancer endoscopic biopsy samples using targeted next-generation sequencing. Am J Cancer Res. 2017;7(7):1540–1553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.