196
Views
0
CrossRef citations to date
0
Altmetric
Review

Non-alcoholic fatty liver disease establishment and progression: genetics and epigenetics as relevant modulators of the pathology

ORCID Icon, ORCID Icon & ORCID Icon
Pages 521-533 | Received 12 Aug 2022, Accepted 13 Nov 2022, Published online: 25 Nov 2022

References

  • Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the american association for the study of liver diseases. Hepatology. 2018;67(1):328–357.
  • Eslam M, George J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol. 2020;17(1):40–52.
  • Paik JM, Golabi P, Younossi Y, et al. The growing burden of disability related to chronic liver disease in the United States: data from the global burden of disease study 2007–2017. Hepatol Commun. 2021;5(5):749–759.
  • Valenti L, Pedica F, Colombo M. Distinctive features of hepatocellular carcinoma in non-alcoholic fatty liver disease. Dig Liver Dis. 2022;54(2):154–163.
  • Geh D, Anstee QM, Reeves HL. Nafld-associated hcc: progress and opportunities. J Hepatocell Carcinoma. 2021;8:223–239.
  • Ben-Assuli O, Jacobi A, Goldman O, et al. Stratifying individuals into non-alcoholic fatty liver disease risk levels using time series machine learning models. J Biomed Inform. 2022;126:103916–103986. (
  • Shao M, Ye Z, Qin Y, et al. Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease. Exp Ther Med. 2020;20(5):1–1.
  • Català-Senent JF, Hidalgo MR, Berenguer M, et al. Hepatic steatosis and steatohepatitis: a functional meta-analysis of sex-based differences in transcriptomic studies. Biol Sex Differ. 2021;12(1):12–29.
  • Tokushige K, Ikejima K, Ono M, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. J Gastroenterol. 2021;56(11):951–963.
  • Bril F, Cusi K. Nonalcoholic fatty liver disease. Endocrinol Metab Clin North Am. 2016;45(4):765–781.
  • Cai J, Zhang XJ, Li H. Progress and challenges in the prevention and control of nonalcoholic fatty liver disease. Med Res Rev. 2019;39(1):328–348.
  • Karkucinska‐Wieckowska A, Simoes ICM, Kalinowski P, et al. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: a complex relationship. Eur J Clin Investigation. 2022;52(3):1–19.
  • Febbraio MA, Reibe S, Shalapour S, et al. Preclinical models for studying nash-driven hcc: How useful are they? Cell Metab. 2019;29(1):18–26.
  • Brunt EM, Wong VWS, Nobili V, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1(1):1–22.
  • Zarei M, Pizarro-Delgado J, Barroso E, et al. Targeting fgf21 for the treatment of nonalcoholic steatohepatitis. Trends Pharmacol Sci. 2020;41(3):199–208.
  • Kang SH, Cho Y, Jeong SW, et al. From nonalcoholic fatty liver disease to metabolic-associated fatty liver disease: Big wave or ripple? Clin Mol Hepatol. 2021;27(2):257–269.
  • Pirola CJ, Salatino A, Quintanilla MF, et al. The influence of host genetics on liver microbiome composition in patients with NAFLD. eBioMedicine. 2022;76:103813–103858. (
  • Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1026–1037.
  • Megahed FAK, Zhou X, Sun P, et al. The interplay between non-alcoholic fatty liver disease and innate immunity in hepatitis B virus patients. Egypt Liver J. 2021;11(1):1–11.
  • Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2019;16(6):377–386.
  • Stefan N, Cusi K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022;10(4):284–296.
  • Meroni M, Longo M, Rustichelli A, et al. Nutrition and genetics in nafld: the perfect binomium. Int J Mol Sci. 2020;21(8):1–32.
  • Cui J, Chen CH, Lo MT, et al. Shared genetic effects between hepatic steatosis and fibrosis: a prospective twin study. Hepatology. 2016;64(5):1547–1558.
  • Choudhary NS, Duseja A. Genetic and epigenetic disease modifiers: non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Transl Gastroenterol Hepatol. 2021;6(2):2–17.
  • Oliveira AG, Fiorotto R. Novel approaches to liver disease diagnosis and modeling. Transl Gastroenterol Hepatol. 2021;6(19):14–19.
  • Anstee QM, Darlay R, Cockell S, et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J Hepatol. 2020;73(3):505–515.
  • Balcar L, Semmler G, Oberkofler H, et al. PNPLA3 is the dominant SNP linked to liver disease severity at time of first referral to a tertiary center. Dig Liver Dis. 2022;54(1):84–90.
  • Teo K, Abeysekera KWM, Adams L, et al. Rs641738c > t near mboat7 is associated with liver fat, alt and fibrosis in nafld: a meta-analysis. J Hepatol. 2021;74(1):20–30.
  • Vespasiani-Gentilucci U, Dell’Unto C, De Vincentis A, et al. Combining genetic variants to improve risk prediction for nafld and its progression to cirrhosis: a proof of concept study. Can J Gastroenterol Hepatol. 2018;2018:7564835–7564839.
  • Gellert‐Kristensen H, Richardson TG, Davey Smith G, et al. Combined effect of pnpla3, tm6sf2, and hsd17b13 variants on risk of cirrhosis and hepatocellular carcinoma in the general population. Hepatology. 2020;72(3):845–856.
  • Degasperi E, Galmozzi E, Pelusi S, et al. Hepatic fat—genetic risk score predicts hepatocellular carcinoma in patients with cirrhotic hcv treated with daas. Hepatology. 2020;72(6):1912–1923.
  • Ramos LF, Silva CM, Pansa CC, et al. Non-alcoholic fatty liver disease: molecular and cellular interplays of the lipid metabolism in a steatotic liver. Expert Rev Gastroenterol Hepatol. 2021;15(1):25–40.
  • Lee J, Friso S, Choi SW. Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients. 2014;6(8):3303–3325.
  • Zhao F. Dysregulated epigenetic modifications in the pathogenesis of NAFLD-HCC. Singapore (ásia). Adv Exp Med Biol. 2018;1061:79–93.
  • Pirola CJ, Sookoian S. Metabolic dysfunction-associated fatty liver disease: advances in genetic and epigenetic implications. Curr Opin Lipidol. 2022;33(2):95–102.
  • Seebacher F, Zeigerer A, Kory N, et al. Hepatic lipid droplet homeostasis and fatty liver disease. Semin Cell Dev Biol. 2020;108:72–81.
  • Guo M, Xiang L, Yao J, et al. Comprehensive transcriptome profiling of nafld- and nash-induced skeletal muscle dysfunction. Front Endocrinol. 2022;13(851520):851514–851520.
  • Mashek DG. Hepatic lipid droplets: a balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab. 2021;50(:101115–101118.
  • Geng Y, Faber KN, de Meijer VE, et al. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int. 2021;15(1):21–35.
  • Grossini E, Garhwal DP, Calamita G, et al. Exposure to plasma from non-alcoholic fatty liver disease patients affects hepatocyte viability, generates mitochondrial dysfunction, and modulates pathways involved in fat accumulation and inflammation. Front Med. 2021;8(693997):693912–693997.
  • Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. Mol Biosyst. 2015;11(1):38–59.
  • Juárez-Hernández E, Chávez-Tapia NC, Uribe M, et al. Role of bioactive fatty acids in nonalcoholic fatty liver disease. Nutr J. 2015;15(1):1–10.
  • Filali-Mouncef Y, Hunter C, Roccio F, et al. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy. 2022;18(1):50–72.
  • Menikdiwela KR, Tôrres Guimarães JP, Ramalingam L, et al. Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity. Crit Rev Biochem Mol Biol. 2021;56(5):455–481.
  • Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–161.
  • Semova I, Biddinger SB. Triglycerides in nonalcoholic fatty liver disease: guilty until proven innocent. Trends Pharmacol Sci. 2021;42(3):183–190.
  • Mashek DG. Hepatic fatty acid trafficking: multiple forks in the road. Adv Nutr. 2013;4(6):697–710.
  • Eccleston HB, Andringa KK, Betancourt AM, et al. Chronic exposure to a high-fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice. Antioxid Redox Signal. 2011;15(2):447–459.
  • Lee Y, Kim S-M, Jung E-H, et al. Lithium chloride promotes lipid accumulation through increased reactive oxygen species generation. Biochim Biophys Acta. 2020;1865(2):1–12.
  • Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–135.
  • Lee J, Park JS, Roh YS. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch Pharm Res. 2019;42(11):935–946.
  • Coronati M, Baratta F, Pastori D, et al. Added fructose in non-alcoholic fatty liver disease and in metabolic syndrome: a narrative review. Nutrients. 2022;14(6):1110–1127.
  • Ameer F, Scandiuzzi L, Hasnain S, et al. De novo lipogenesis in health and disease. Metabolism. 2014;63(7):895–902.
  • Chen H. Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease. Liver Res. 2020;4(1):15–22.
  • Tell G, Vascotto C, Tiribelli C. Alterations in the redox state and liver damage: Hints from the EASL basic school of hepatology. J Hepatol. 2013;58(2):365–374.
  • Baker PR, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest. 2018;128(9):3692–3703.
  • Kumar S, Duan Q, Wu R, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev. 2021;176:113813–113869. (
  • Schuster S, Cabrera D, Arrese M, et al. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15(6):349–364.
  • Fairfield CJ, Drake TM, Pius R, et al. Genome‐wide association study of nafld using electronic health records. Hepatol Commun. 2022;6(2):297–308.
  • Makkonen J, Pietiläinen KH, Rissanen A, et al. Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. J Hepatol. 2009;50(5):1035–1042.
  • Loomba R, Schork N, Chen C-H, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology. 2015;149(7):1784–1793.
  • Brouwers MCGJ, Cantor RM, Kono N, et al. Heritability and genetic loci of fatty liver in familial combined hyperlipidemia. J Lipid Res. 2006;47(12):2799–2807.
  • Schwimmer JB, Celedon MA, Lavine JE, et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology. 2009;136(5):1585–1592.
  • Dongiovanni P, Valenti L, Rametta R, et al. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. Gut. 2010;59(2):267–273.
  • Mackenzie R, Elliott B. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:55–64.
  • Peng CH, Ker YB, Li HH, et al. Abelmoschus esculentus subfractions ameliorate hepatic lipogenesis and lipid uptake via regulating dipeptidyl peptidase-4 – with improving insulin resistance. PLoS One. 2022;17(3):e0265444–14.
  • Yuan F, Gu Z, Bi Y, et al. The association between rs1260326 with the risk of NAFLD and the mediation effect of triglyceride on NAFLD in the elderly Chinese Han population. Aging. 2022;14(6):2736–2747.
  • Yang Z, Wen J, Tao X, et al. Genetic variation in the GCKR gene is associated with non-alcoholic fatty liver disease in Chinese people. Mol Biol Rep. 2011;38(2):1145–1150.
  • Caddeo A, Jamialahmadi O, Solinas G, et al. MBOAT7 is anchored to endomembranes by six transmembrane domains. J Struct Biol. 2019;206(3):349–360.
  • Thangapandi VR, Knittelfelder O, Brosch M, et al. Loss of hepatic Mboat7 leads to liver fibrosis. Gut. 2021;70(5):940–950.
  • Tanaka Y, Shimanaka T, Caddeo A, et al. LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover. Gut. 2021;70(1):180–193.
  • Mancina RM, Dongiovanni P, Petta S, et al. The mboat7-tmc4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of european descent. Gastroenterology. 2016;150(5):1219–1230.e6.
  • Xia M, Chandrasekaran P, Rong M, et al. Hepatic deletion of Mboat7 (LPIAT1) causes activation of SREBP-1c and fatty liver. J Lipid Res. 2021;62:100031.
  • Su W, Wang Y, Jia X, et al. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA. 2014;111(31):11437–11442.
  • Chambers JC, Zhang W, Sehmi J, et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 2011;43(11):1131–1138.
  • Kunutsor SK, Apekey TA, Walley J. Liver aminotransferases and risk of incident type 2 diabetes: a systematic review and meta-analysis. Am J Epidemiol. 2013;178(2):159–171.
  • Ting YW, Kong ASY, Zain SM, et al. Loss-of-function HSD17B13 variants, non-alcoholic steatohepatitis and adverse liver outcomes: results from a multi-ethnic Asian cohort. Clin Mol Hepatol. 2021;27(3):486–498.
  • Unalp‐Arida A, Ruhl CE. Patatin‐like phospholipase domain‐containing protein 3 i148m and liver fat and fibrosis scores predict liver disease mortality in the U. Hepatology. 2020;71(3):820–834.
  • Grimaudo S, Pipitone RM, Pennisi G, et al. Association between pnpla3 rs738409 c > g variant and liver-related outcomes in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2020;18(4):935–944.e3.
  • Park J, Zhao Y, Zhang F, et al. IL6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. J Hepatol. 2022;S0168-8278(22):03053–03057.
  • Bruschi FV, Tardelli M, Herac M, et al. Metabolic regulation of hepatic PNPLA3 expression and severity of liver fibrosis in patients with NASH. Liver Int. 2020;40(5):1098–1110.
  • Pirazzi C, Valenti L, Motta BM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet. 2014;23(15):4077–4085.
  • Pingitore P, Dongiovanni P, Motta BM, et al. PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis. Hum Mol Genet. 2016;25(23):5212–5222.
  • Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46(4):352–356.
  • Luo F, Oldoni F, Das A. tm6sf2: a novel genetic player in nonalcoholic fatty liver and cardiovascular disease. Hepatol Commun. 2022;6(3):448–460.
  • Surakka I, Horikoshi M, Mägi R, et al. The impact of low-frequency and rare variants on lipid levels. Nat Genet. 2015;47(6):589–597.
  • Prill S, Caddeo A, Baselli G, et al. The TM6SF2 E167K genetic variant induces lipid biosynthesis and reduces apolipoprotein B secretion in human hepatic 3D spheroids. Sci Rep. 2019;9(1):1–10.
  • Frieden C, Wang H, Ho CMW. A mechanism for lipid bind-ing to apoE and the role of intrinsically disordered regions cou-pled to domain- domain interactions. Proc Natl Acad Sci USA. 2017;114(24):6292–6297.
  • Niu L, Geyer PE, Albrechtsen NJW, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol Syst Biol. 2019;15(3):e8793.
  • Lo Sasso G, Schlage WK, Boué S, et al. The Apoe−/− mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J Transl Med. 2016;14(1):146.
  • Jamialahmadi O, Mancina RM, Ciociola E, et al. Exome-wide association study on alanine aminotransferase identifies sequence variants in the GPAM and APOE associated with fatty liver disease. Gastroenterology. 2021;160(5):1634–1646.e7.
  • Mancina RM, Sasidharan K, Lindblom A, et al. PSD3 downregulation confers protection against fatty liver disease. Nat Metab. 2022;4(1):60–75.
  • Sodum N, Kumar G, Bojja SL, et al. Epigenetics in nafld/nash: targets and therapy. Pharmacol Res. 2021;167:1–16.
  • Hajri T, Zaiou M, Fungwe TV, et al. Epigenetic regulation of peroxisome proliferator-activated receptor gamma mediates high-fat diet-induced non-alcoholic fatty liver disease. Cells. 2021;10(6):1316–1355.
  • Zaiou M, Amrani R, Rihn B, et al. Dietary patterns influence target gene expression through emerging epigenetic mechanisms in nonalcoholic fatty liver disease. Biomedicines. 2021;9(9):1–18.
  • Zeybel M, Hardy T, Robinson SM, et al. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin Epigenet. 2015;7(1):1–11.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395.
  • Wellen KE, Hatzivassiliou G, Sachdeva UM, et al. Atp-citrate lyase links cellular metabolism to histone acetylation. Science. 2009;324(5930):1076–1080.
  • Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007;8(4):284–295.
  • Poziello A, Nebbioso A, Stunnenberg HG, et al. Recent insights into histone acetyltransferase-1: biological function and involvement in pathogenesis. Epigenetics. 2021;16(8):838–850.
  • Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011;331(6022):1315–1319.
  • Mazzoccoli G, Vinciguerra M, Oben J, et al. Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int. 2014;34(8):1133–1152.
  • Blander G, Guarente L. The sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73(1):417–435.
  • Bricambert J, Miranda J, Benhamed F, et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest. 2010;120(12):4316–4331.
  • Charidemou E, Tsiarli MA, Theophanous A, et al. Histone acetyltransferase NAA40 modulates acetyl-CoA levels and lipid synthesis. BMC Biol. 2022;20(1):22.
  • Kumar V, Kundu S, Singh A, et al. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective. Curr Neuropharmacol. 2022;20(1):158–178.
  • Renzini A, D’Onghia M, Coletti D, et al. Histone deacetylases as modulators of the crosstalk between skeletal muscle and other organs. Front Physiol. 2022;13(706003):1–15.
  • Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014;25(3):138–145.
  • Rappa F, Greco A, Podrini C, et al. Immunopositivity for histone macroh2a1 isoforms marks steatosis-associated hepatocellular carcinoma. PLoS One. 2013;8(3):1–10.
  • Sun C, Zhang F, Ge X, et al. Sirt1 improves insulin sensitivity under insulin-resistant conditions by repressing ptp1b. Cell Metab. 2007;6(4):307–319.
  • Kim H-S, Patel K, Muldoon-Jacobs K, et al. Sirt3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010;17(1):41–52.
  • Hirschey MD, Shimazu T, Jing E, et al. Sirt3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011;44(2):177–190.
  • Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol. 2019;20(2):102–115.
  • Clare CE, Brassington AH, Kwong WY, et al. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Annu Rev Anim Biosci. 2019;7(1):263–287.
  • Pogribny IP, Shpyleva SI, Muskhelishvili L, et al. Role of DNA damage and alterations in cytosine DNA methylation in rat liver carcinogenesis induced by a methyl-deficient diet. Mutat Res. 2009;669(1–2):56–62.
  • Juanola O, Martínez-López S, Francés R, et al. Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors. Int J Environ Res Public Health. 2021;18(10):1–24.
  • Pooya S, Blaise S, Moreno Garcia M, et al. Methyl donor deficiency impairs fatty acid oxidation through PGC-1α hypomethylation and decreased ER-α, ERR-α, and HNF-4α in the rat liver. J Hepatol. 2012;57(2):344–351.
  • Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol. 2022;200(:115017–115033.
  • Ramani K, Lu SC. Methionine adenosyltransferases in liver health and diseases. Liver Res. 2017;1(2):103–111.
  • Torres J-L, Novo-Veleiro I, Manzanedo L, et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol. 2018;24(36):4104–4118.
  • Lai Z, Chen J, Ding C, et al. Association of hepatic global Dna methylation and serum one‐carbon metabolites with histological severity in patients with Nafld. Obesity. 2020;28(1):197–205.
  • Rinn JL, Chang HY. Genome regulation by long noncoding rnas. Annu Rev Biochem. 2012;81(1):145–166.
  • Seal RL, Chen L, Griffiths‐Jones S, et al. A guide to naming human non‐coding RNA genes. Embo J. 2020;39(6):1–18.
  • Starkey Lewis PJ, Dear J, Platt V, et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology. 2011;54(5):1767–1776.
  • da Silveira MB, Pansa CC, Malaspina O, et al. The functional activity of the miR-1914-5p in lipid metabolism of the hepatocarcinoma cell line HepG2: a potential molecular tool for controlling hepatic cellular migration. Mol Biol Rep. 2021;48(4):3463–3474.
  • Dwivedi S, Purohit P, Sharma P. MicroRNAs and diseases: promising biomarkers for diagnosis and therapeutics. Ind J Clin Biochem. 2019;34(3):243–245.
  • Kaur P, Kotru S, Singh S, et al. MiRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms. J Physiol Biochem. 2022;78(1):19–37.
  • Brennecke J, Stark A, Russell RB, et al. Principles of microRNA-target recognition. PLoS Biol. 2005;3(3):e85–15.
  • Salim U, Kumar A, Kulshreshtha R, et al. Biogenesis, characterization, and functions of mirtrons. Wiley Interdiscip Rev RNA. 2022;13(1):1–15.
  • Kansakar U, Varzideh F, Mone P, et al. Functional role of microRNAs in regulating cardiomyocyte death. Cells. 2022;11(6):983–913.
  • Xu Y, Zhu Y, Hu S, et al. Hepatocyte miR-34a is a key regulator in the development and progression of non-alcoholic fatty liver disease. Mol Metab. 2021;51(101244):1–11.
  • Lee AT, Yang MY, Lee YJ, et al. Gallic acid improves diabetic steatosis by downregulating microRNA-34a-5p through targeting NFE2L2 expression in high-fat diet-fed db/db mice. Antioxidants. 2022;11(1):1–22.
  • Ding J, Li M, Wan X, et al. Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep. 2015;5(1):1–10.
  • Lewis AP, Jopling CL. Regulation and biological function of the liver-specific miR-122. Biochem Soc Trans. 2010;38(6):1553–1557.
  • Becker PP, Rau M, Schmitt J, et al. Performance of serum microRNAs -122, -192 and -21 as biomarkers in patients with non-alcoholic steatohepatitis. PLoS One. 2015;10(11):e0142661–16.
  • Hu Y, Peng X, Du G, et al. MicroRNA-122-5p inhibition improves inflammation and oxidative stress damage in dietary-induced non-alcoholic fatty liver disease through targeting FOXO3. Front Physiol. 2022;13(803445):1–12.
  • Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab. 2021;50(:101111–101114.
  • Dongiovanni P, Meroni M, Longo M, et al. MiRNA signature in NAFLD: a turning point for a non-invasive diagnosis. Int J Mol Sci. 2018;19(12):1–24.
  • Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab. 2021;50:1–14.
  • Newman LA, Sorich MJ, Rowland A. Role of extracellular vesicles in the pathophysiology, diagnosis and tracking of non-alcoholic fatty liver disease. J Clin Microbiol. 2020;9(7):1–12.
  • Newman LA, Useckaite Z, Johnson J, et al. Selective isolation of liver-derived extracellular vesicles redefines performance of mirna biomarkers for non-alcoholic fatty liver disease. Biomedicines. 2022;10(1):1–16.
  • Gjorgjieva M, Sobolewski C, Dolicka D, et al. MiRNAs and NAFLD: from pathophysiology to therapy. Gut. 2019;68(11):2065–2079.
  • Zobeiri M, Parvizi F, Kalhori MR, et al. Targeting miRNA by natural products: a novel therapeutic approach for nonalcoholic fatty liver. Evid Based Complement Alternat Med. 2021;2021(6641031):6641016–6641031.
  • Bayoumi A, Grønbaek H, George J, et al. The epigenetic drug discovery landscape for metabolic-associated fatty liver disease. Trends Genet. 2020;36(6):429–441.
  • Arrese M, Arab JP, Barrera F, et al. Insights into nonalcoholic fatty-liver disease heterogeneity. Semin Liver Dis. 2021;41(4):421–434.
  • Zhou F, Zhou J, Wang W, et al. Unexpected rapid increase in the burden of nafld in china from 2008 to 2018: a systematic review and meta‐analysis. Hepatology. 2019;70(4):1119–1133.
  • Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18(4):223–238.
  • Golabi P, Paik JM, AlQahtani S, et al. Burden of non-alcoholic fatty liver disease in Asia, the Middle East and North Africa: data from global burden of disease 2009–2019. J Hepatol. 2021;75(4):795–809.
  • Spearman CW, Desalegn H, Ocama P, et al. The Sub-Saharan Africa position statement on the redefinition of fatty liver disease: from NAFLD to MAFLD. J Hepatol. 2021;74(5):1256–1258.
  • Mak D, Kramvis A. Epidemiology and aetiology of hepatocellular carcinoma in Sub-Saharan Africa. Hepatoma Res. 2021;7:1–26.
  • Kawaguchi T, Sumida Y, Umemura A, et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in japanese. PLoS One. 2012;7(6):e38322–10.
  • Wang X, Liu Z, Wang K, et al. Additive effects of the risk alleles of PNPLA3 and TM6SF2 on non-alcoholic fatty liver disease (NAFLD) in a Chinese population. Front Genet. 2016;7(140):1–7.
  • Le MH, Yeo YH, Cheung R, et al. Ethnic influence on nonalcoholic fatty liver disease prevalence and lack of disease awareness in the United States, 2011–2016. J Intern Med. 2020;287(6):711–722.
  • Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–1465.
  • Kim DY, Park JY. Genetic risk factors associated with NAFLD. Hepatoma Res. 2020;6:1–10.
  • Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10(6):330–344.
  • Gabrielli M, Franza L, Esperide A, et al. Liver injury in patients hospitalized for covid-19: possible role of therapy. Vaccines. 2022;10(2):114–192.
  • Bangash MN, Patel J, Parekh D. COVID-19 and the liver: little cause for concern. Lancet Gastroenterol Hepatol. 2020;5(6):529–530.
  • Wang Y, Liu S, Liu H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73(4):807–816.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.