415
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Mass spectrometry-based untargeted metabolomics study of non-obese individuals with non-alcoholic fatty liver disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1344-1350 | Received 18 Mar 2023, Accepted 09 Jun 2023, Published online: 20 Jun 2023

References

  • Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease—meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi: 10.1002/hep.28431.
  • Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):686–690. doi: 10.1038/nrgastro.2013.171.
  • Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221–1231. doi: 10.1056/NEJMra011775.
  • Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43(2 Suppl 1):S99–S112. doi: 10.1002/hep.20973.
  • Noureddin M, Loomba R. Nonalcoholic fatty liver disease: ındications for liver biopsy and noninvasive biomarkers. Clin Liver Dis. 2012;1(4):104–107. doi: 10.1002/cld.65.
  • Kim HY. Recent advances in nonalcoholic fatty liver disease metabolomics. Clin Mol Hepatol. 2021;27(4):553–559. 20210608. doi: 10.3350/cmh.2021.0127.
  • Masarone M, Troisi J, Aglitti A, et al. Untargeted metabolomics as a diagnostic tool in NAFLD: discrimination of steatosis, steatohepatitis and cirrhosis. Metabolomics. 2021;17(2):12. doi: 10.1007/s11306-020-01756-1.
  • Kim D, Kim WR. Nonobese fatty liver disease. Clin Gastroenterol Hepatol. 2017;15(4):474–485. doi: 10.1016/j.cgh.2016.08.028.
  • Yoshitaka H, Hamaguchi M, Kojima T, et al. Nonoverweight nonalcoholic fatty liver disease and incident cardiovascular disease: a post hoc analysis of a cohort study. Medicine. 2017;96(18):e6712. doi: 10.1097/MD.0000000000006712.
  • Duseja A, De A, Wong V. Special population: lean nonalcoholic fatty liver disease. Clin Liver Dis. 2023;27(2):451–469. doi: 10.1016/j.cld.2023.01.011.
  • Chambers MC, Maclean B, Burke R, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–920. doi: 10.1038/nbt.2377.
  • Pang Z, Zhou G, Ewald J, et al. Using metaboanalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. 2022;17(8):1735–1761. doi: 10.1038/s41596-022-00710-w.
  • Shen X, Yan H, Wang C, et al. TidyMass an object-oriented reproducible analysis framework for LC–MS data. Nat Commun. 2022;13(1):4365. doi: 10.1038/s41467-022-32155-w.
  • Team RC. R: A language and environment for statistical computing. 2022.
  • Yamada S, Tanimoto A, Sasaguri Y. Critical in vivo roles of histamine and histamine receptor signaling in animal models of metabolic syndrome. Pathol Int. 2016;66(12):661–671. doi: 10.1111/pin.12477.
  • Yamada S, Guo X, Wang K-Y, et al. Novel function of histamine signaling via histamine receptors in cholesterol and bile acid metabolism: histamine H2 receptor protects against nonalcoholic fatty liver disease. Pathol Int. 2016;66(7):376–385. doi: 10.1111/pin.12423.
  • Udenwobele DI, Su RC, Good SV, et al. Myristoylation: an ımportant protein modification in the ımmune response. Front Immunol. 2017;8:751. doi: 10.3389/fimmu.2017.00751.
  • Nadler MJ, Harrison ML, Ashendel CL, et al. Treatment of T cells with 2-hydroxymyristic acid inhibits the myristoylation and alters the stability of p56lck. Biochemistry. 1993;32(35):9250–9255. doi: 10.1021/bi00086a034.
  • Lee G, You HJ, Bajaj JS, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun. 2020;11(1):4982. doi: 10.1038/s41467-020-18754-5.
  • Aggarwal S, Yadav V, Maiwall R, et al. Metabolomic analysis shows dysregulation in amino acid and NAD + metabolism in palmitate treated hepatocytes and plasma of non-alcoholic fatty liver disease spectrum. Biochem Biophys Res Commun. 2023;643:129–138. doi: 10.1016/j.bbrc.2022.12.078.
  • Willebrords J, Pereira IVA, Maes M, et al. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res. 2015;59:106–125. doi: 10.1016/j.plipres.2015.05.002.
  • Basaranoglu M, Basaranoglu G, Sabuncu T, et al. Fructose as a key player in the development of fatty liver disease. World J Gastroenterol. 2013;19(8):1166–1172. doi: 10.3748/wjg.v19.i8.1166.
  • Granucci N, Harris PJ, Villas-Boas SG. Chemical compositions of fruit and vegetable pomaces from the beverage ındustries. Waste Biomass Valor. 2023. doi: 10.1007/s12649-023-02095-7.
  • Alami F, Alizadeh M, Shateri K. The effect of a fruit-rich diet on liver biomarkers, insulin resistance, and lipid profile in patients with non-alcoholic fatty liver disease: a randomized clinical trial. Scand J Gastroenterol. 2022;57(10):1238–1249. doi: 10.1080/00365521.2022.2071109.
  • Toledo-Ibelles P, Gutiérrez-Vidal R, Calixto-Tlacomulco S, et al. Hepatic accumulation of hypoxanthine: a link between hyperuricemia and nonalcoholic fatty liver disease. Arch Med Res. 2021;52(7):692–702. doi: 10.1016/j.arcmed.2021.04.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.