127
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Gallic acid improves liver cirrhosis by reducing oxidative stress and fibrogenesis in the liver of rats induced by bile duct ligation

, , , &
Pages 1474-1483 | Received 31 Mar 2023, Accepted 21 Jun 2023, Published online: 14 Jul 2023

References

  • Schuppan D, Afdhal NH. Liver cirrhosis. Lancet. 2008;371(9615):838–851. doi: 10.1016/S0140-6736(08)60383-9.
  • Zhou W-C, Zhang Q-B, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol. 2014;20(23):7312–7324. doi: 10.3748/wjg.v20.i23.7312.
  • Shipovskaya A, Dudanova O. Intrahepatic cholestasis in nonalcoholic fatty liver disease. Ter Arkh. 2018;90(2):69–74. doi: 10.26442/terarkh201890269-74.
  • Gunaydin M, Cil ATB. Progressive familial intrahepatic cholestasis: diagnosis, management, and treatment. Hepat Med. 2018;10:95–104. doi: 10.2147/HMER.S137209.
  • Sultana H, Komai M, Shirakawa H. The role of vitamin K in cholestatic liver disease. Nutrients. 2021;13(8):2515. doi: 10.3390/nu13082515.
  • Pan P-H, Wang Y-Y, Lin S-Y, et al. Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats. Biomed Pharmacother. 2022;151:113133. doi: 10.1016/j.biopha.2022.113133.
  • Abd El Motteleb DM, Ibrahim IA-H, Elshazly SM. Sildenafil protects against bile duct ligation induced hepatic fibrosis in rats: potential role for silent information regulator 1 (SIRT1). Toxicol Appl Pharmacol. 2017;335:64–71. doi: 10.1016/j.taap.2017.09.021.
  • Lim J, Kim T, Song I, et al. Protective effect of the roots extract of platycodon grandiflorum on bile duct ligation-induced hepatic fibrosis in rats. Hum Exp Toxicol. 2013;32(11):1197–1205. doi: 10.1177/0960327112474832.
  • Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol. 2012;130(3-5):147–158. doi: 10.1016/j.jsbmb.2011.06.012.
  • Kennedy P, Bane O, Hectors SJ, et al. Noninvasive imaging assessment of portal hypertension. Abdom Radiol (NY). 2020;45(11):3473–3495. doi: 10.1007/s00261-020-02729-7.
  • Zhang Y, Lu Y, Ji H, et al. Anti-inflammatory, anti-oxidative stress and novel therapeutic targets for cholestatic liver injury. Biosci Trends. 2019;13(1):23–31. doi: 10.5582/bst.2018.01247.
  • Van Campenhout S, Van Vlierberghe H, Devisscher L. Common bile duct ligation as model for secondary biliary cirrhosis. Exp Cholestasis Res Springer. 2019;1981:237–247.
  • Liver EAFTSOT. EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51(2):237–267.
  • Zong Y, Zhang M, Li S, et al. Effects of ethyl pyruvate on bile duct ligation-induced liver fibrosis by regulating Nrf2 pathway and proinflammatory cytokines in rats. Gastroenterol Res Pract. 2019;2019:1–11. doi: 10.1155/2019/2969802.
  • Pan P-H, Wang Y-Y, Lin S-Y, et al. 18β-Glycyrrhetinic acid protects against cholestatic liver injury in bile Duct-Ligated rats. Antioxidants. 2022;11(5):961. doi: 10.3390/antiox11050961.
  • Clichici S, David L, Moldovan B, et al. Hepatoprotective effects of silymarin coated gold nanoparticles in experimental cholestasis. Mater Sci Eng C Mater Biol Appl. 2020;115:111117. doi: 10.1016/j.msec.2020.111117.
  • Zahrani NAA, El-Shishtawy RM, Asiri AM. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: a review. Eur J Med Chem. 2020;204:112609. doi: 10.1016/j.ejmech.2020.112609.
  • Shabani S, Rabiei Z, Amini-Khoei H. Exploring the multifaceted neuroprotective actions of gallic acid: a review. Int J Food Prop. 2020;23(1):736–752. doi: 10.1080/10942912.2020.1753769.
  • Bai J, Zhang Y, Tang C, et al. Gallic acid: pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021;133:110985. doi: 10.1016/j.biopha.2020.110985.
  • Lin Y, Luo T, Weng A, et al. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front Immunol. 2020;11:580593. doi: 10.3389/fimmu.2020.580593.
  • Owumi SE, Nwozo SO, Effiong ME, et al. Gallic acid and omega-3 fatty acids decrease inflammatory and oxidative stress in manganese-treated rats. Exp Biol Med (Maywood). 2020;245(9):835–844. doi: 10.1177/1535370220917643.
  • Lane-Petter W. The international committee on laboratory animals. Nature. 1960;185(4712):508–509. doi: 10.1038/185508a0.
  • Abdel-Moneim A, Yousef AI, El-Twab A, et al. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab Brain Dis. 2017;32(4):1279–1286. doi: 10.1007/s11011-017-0039-8.
  • Mansouri MT, Naghizadeh B, Ghorbanzadeh B, et al. Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats. Pharmacol Biochem Behav. 2013;111:90–96. doi: 10.1016/j.pbb.2013.09.002.
  • Ommati MM, Amjadinia A, Mousavi K, et al. N-acetyl cysteine treatment mitigates biomarkers of oxidative stress in different tissues of bile duct ligated rats. Stress. 2021;24(2):213–228. doi: 10.1080/10253890.2020.1777970.
  • Naserzadeh R, Jafaripour L, Eslamifar Z, et al. The effect of receiving L-glutamine on the reduction of renal tissue damages and renal function recovery following gentamicin-induced nephrotoxicity in rats. J Babol Univ Med Sci. 2021;23(1):267–274.
  • Rostami R, Eslamifar Z, Nazemi S, et al. The effect of thyme essential oil on liver injuries caused by renal ischemia-reperfusion in rats. Biomed Res Int. 2022;2022:1–8. doi: 10.1155/2022/2988334.
  • Buege JA, Aust SD. microsomal lipid peroxidation. Meth Enzymol. 1978;52:302–310.
  • Zhang J, Kirkham M. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 1996;132(3):361–373. doi: 10.1111/j.1469-8137.1996.tb01856.x.
  • Dadpisheh S, Ahmadvand H, Jafaripour L, et al. Effect of troxerutin on oxidative stress induced by sciatic nerve ischemia-reperfusion injury in rats. J Kerman Univ Med Sci. 2020;27(4):338–347.
  • Aebi H. Catalase in vitro. Meth Enzymol. 1984;105:121–126.
  • Shu B, Zhang J, Cui G, et al. Evaluation of reference genes for real-time quantitative PCR analysis in larvae of Spodoptera litura exposed to azadirachtin stress conditions. Front Physiol. 2018;9:372. doi: 10.3389/fphys.2018.00372.
  • Erisgin Z, Atasever M, Cetinkaya K, et al. Protective effects of Nigella sativa oil against carboplatin-induced liver damage in rats. Biomed Pharmacother. 2019;110:742–747. doi: 10.1016/j.biopha.2018.12.037.
  • Bancroft JD, Gamble M. Theory and practice of histological techniques. Churchill Livingstone. 2002.
  • Heeba GH, El-Deen RM, Abdel-Latif RG, et al. Combined treatments with metformin and phosphodiesterase inhibitors alleviate nonalcoholic fatty liver disease in high-fat diet fed rats: a comparative study. Can J Physiol Pharmacol. 2020;98(8):498–505. doi: 10.1139/cjpp-2019-0487.
  • Godugu C, Khurana A, Saifi MA. Rare earth cerium oxide nanoparticles attenuated liver fibrosis in bile duct ligation mice model. J Trace Elem Med Biol. 2023;75:127102. doi: 10.1016/j.jtemb.2022.127102.
  • Ghanbarinejad V, Jamshidzadeh A, Khalvati B, et al. Apoptosis-inducing factor plays a role in the pathogenesis of hepatic and renal injury during cholestasis. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(6):1191–1203. doi: 10.1007/s00210-020-02041-7.
  • Heidari R, Mohammadi H, Ghanbarinejad V, et al. Proline supplementation mitigates the early stage of liver injury in bile duct ligated rats. J Basic Clin Physiol Pharmacol. 2018;30(1):91–101. doi: 10.1515/jbcpp-2017-0221.
  • Cai S-Y, Ge M, Mennone A, et al. Inflammasome is activated in the liver of cholestatic patients and aggravates hepatic injury in bile duct–ligated mouse. Cell Mol Gastroenterol Hepatol. 2020;9(4):679–688. doi: 10.1016/j.jcmgh.2019.12.008.
  • Lu Z-N, Niu W-X, Zhang N, et al. Pantoprazole ameliorates liver fibrosis and suppresses hepatic stellate cell activation in bile duct ligation rats by promoting Yap degradation. Acta Pharmacol Sin. 2021;42(11):1808–1820. doi: 10.1038/s41401-021-00754-w.
  • Wei S, Ma X, Niu M, et al. Mechanism of paeoniflorin in the treatment of bile duct ligation-induced cholestatic liver injury using integrated metabolomics and network pharmacology. Front Pharmacol. 2020;11:586806. doi: 10.3389/fphar.2020.586806.
  • Nasehi Z, Kheiripour N, Taheri MA, et al. The protective effects of Securigera securidaca seed extract on liver injury induced by bile duct ligation in rats. Biomed Res Int. 2022;2022:1–12. doi: 10.1155/2022/6989963.
  • Moslemi Z, Bahrami M, Hosseini E, et al. Portulaca oleracea methanolic extract attenuate bile duct ligation-induced acute liver injury through hepatoprotective and anti-inflammatory effects. Heliyon. 2021;7(7):e07604. doi: 10.1016/j.heliyon.2021.e07604.
  • Wang Y-Y, Lin S-Y, Chen W-Y, et al. Glechoma hederacea extracts attenuate cholestatic liver injury in a bile duct-ligated rat model. J Ethnopharmacol. 2017;204:58–66. doi: 10.1016/j.jep.2017.04.011.
  • Hsu S-J, Wang S-S, Hsin I-F, et al. Green tea polyphenol decreases the severity of portosystemic collaterals and mesenteric angiogenesis in rats with liver cirrhosis. Clin Sci (Lond). 2014;126(9):633–644. doi: 10.1042/CS20130215.
  • Nouri A, Heibati F, Heidarian E. Gallic acid exerts anti-inflammatory, anti-oxidative stress, and nephroprotective effects against paraquat-induced renal injury in male rats. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(1):1–9. doi: 10.1007/s00210-020-01931-0.
  • Sousa JN, Paraíso AF, Andrade JMO, et al. Oral gallic acid improve liver steatosis and metabolism modulating hepatic lipogenic markers in obese mice. Exp Gerontol. 2020;134:110881. doi: 10.1016/j.exger.2020.110881.
  • Owumi S, Najophe ES, Farombi EO, et al. Gallic acid protects against aflatoxin B1‐induced oxidative and inflammatory stress damage in rats kidneys and liver. J Food Biochem. 2020;44(8):e13316. doi: 10.1111/jfbc.13316.
  • Jiang Y, Pei J, Zheng Y, et al. Gallic acid: a potential anti-cancer agent. Chin J Integr Med. 2022;28(7):661–671. doi: 10.1007/s11655-021-3345-2.
  • Ojeaburu S, Oriakhi K. Hepatoprotective, antioxidant and, anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats. Toxicol Rep. 2021;8:177–185. doi: 10.1016/j.toxrep.2021.01.001.
  • Mehrzadi S, Hosseini P, Mehrabani M, et al. Attenuation of bleomycin-induced pulmonary fibrosis in Wistar rats by combination treatment of two natural phenolic compounds: quercetin and gallic acid. Nutr Cancer. 2021;73(10):2039–2049. doi: 10.1080/01635581.2020.1820053.
  • Hussein RM, Anwar MM, Farghaly HS, et al. Gallic acid and ferulic acid protect the liver from thioacetamide-induced fibrosis in rats via differential expression of miR-21, miR-30 and miR-200 and impact on TGF-β1/Smad3 signaling. Chem Biol Interact. 2020;324:109098. doi: 10.1016/j.cbi.2020.109098.
  • Alazragi R. Protective role of ferulic acid and/or gallic acid against pulmonary toxicity induced by amiodarone in rats. Arch Pharmacy Pract. 2020;11(4):83–90.
  • Radwan SAA, El-Maadawy WH, ElMeshad AN, et al. Impact of reverse micelle loaded lipid nanocapsules on the delivery of gallic acid into activated hepatic stellate cells: a promising therapeutic approach for hepatic fibrosis. Pharm Res. 2020;37(9):1–17. doi: 10.1007/s11095-020-02891-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.