165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Circulating cytokines and alcoholic liver disease: a two-sample bidirectional Mendelian randomization study

, , , , , & show all
Pages 325-332 | Received 06 Aug 2023, Accepted 15 Nov 2023, Published online: 23 Nov 2023

References

  • Meroni M, Longo M, Dongiovanni P. Alcohol or gut microbiota: who is the guilty? Int J Mol Sci. 2019;20(18):4568. doi: 10.3390/ijms20184568.
  • Seitz HK, Bataller R, Cortez-Pinto H, et al. Alcoholic liver disease. Nat Rev Dis Primers. 2018;4(1):16. doi: 10.1038/s41572-018-0014-7.
  • Teschke R. Alcoholic steatohepatitis (ASH) and alcoholic hepatitis (AH): Cascade of events, clinical aspects, and pharmacotherapy options. Expert Opin Pharmacother. 2018;19(8):779–793. doi: 10.1080/14656566.2018.1465929.
  • Huang DQ, Mathurin P, Cortez-Pinto H, et al. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat Rev Gastroenterol Hepatol. 2023;20(1):37–49. doi: 10.1038/s41575-022-00688-6.
  • Hagström H, Thiele M, Roelstraete B, et al. Mortality in biopsy-proven alcohol-related liver disease: a population-based nationwide cohort study of 3453 patients. Gut. 2021;70(1):170–179. doi: 10.1136/gutjnl-2019-320446.
  • Devarbhavi H, Asrani SK, Arab JP, et al. Global burden of liver disease: 2023 update. J Hepatol. 2023;79:(2):516–537. doi: 10.1016/j.jhep.2023.03.017.
  • Tuma DJ, Casey CA. Dangerous byproducts of alcohol breakdown–focus on adducts. Alcohol Res Health. 2003;27(4):285–290.
  • Hagymási K, Blázovics A, Lengyel G, et al. Oxidative damage in alcoholic liver disease. Eur J Gastroenterol Hepatol. 2001;13(1):49–53. doi: 10.1097/00042737-200101000-00009.
  • Liu M, Cao S, He L, et al. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nat Commun. 2021;12(1):4560. doi: 10.1038/s41467-021-24843-w.
  • Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 2022;34(11):1700–1718. doi: 10.1016/j.cmet.2022.09.017.
  • Voican CS, Njiké-Nakseu M, Boujedidi H, et al. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 2015;35(3):967–978. doi: 10.1111/liv.12575.
  • Murakami S, Imamura M, Uchida T, et al. Serum interleukin-6 level predicts the prognosis for patients with alcohol-related acute-on-chronic liver failure. Hepatol Int. 2023;17. (5):1326. doi: 10.1007/s12072-023-10532-x.
  • Effenberger M, Widjaja AA, Grabherr F, et al. Interleukin-11 drives human and mouse alcohol-related liver disease. Gut. 2023;72(1):168–179. doi: 10.1136/gutjnl-2021-326076.
  • Tamburini BAJ, Padera TP, Lund AW. Editorial: regulation of immune function by the lymphatic vasculature. Front Immunol. 2019;10:2597. doi: 10.3389/fimmu.2019.02597.
  • Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–1163. doi: 10.1002/sim.3034.
  • Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98. doi: 10.1093/hmg/ddu328.
  • Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. doi: 10.7554/eLife.34408.
  • Ahola-Olli AV, Würtz P, Havulinna AS, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet. 2017;100(1):40–50. doi: 10.1016/j.ajhg.2016.11.007.
  • Thursz M, Kamath PS, Mathurin P, et al. Alcohol-related liver disease: areas of consensus, unmet needs and opportunities for further study. J Hepatol. 2019;70(3):521–530. doi: 10.1016/j.jhep.2018.10.041.
  • Bowden J, Del Greco M F, Minelli C, et al. Assessing the suitability of summary data for two-sample mendelian randomization analyses using MR-egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45(6):1961–1974. doi: 10.1093/ije/dyw220.
  • Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–1501. doi: 10.1093/ije/dyt179.
  • Xu H, Wu Z, Feng F, et al. Low vitamin D concentrations and BMI are causal factors for primary biliary cholangitis: a mendelian randomization study. Front Immunol. 2022;13:1055953. doi: 10.3389/fimmu.2022.1055953.
  • Chen L, Peters JE, Prins B, et al. Systematic mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke. Nat Commun. 2022;13(1):6143. doi: 10.1038/s41467-022-33675-1.
  • Sproviero W, Winchester L, Newby D, et al. High blood pressure and risk of dementia: a two-sample mendelian randomization study in the UK biobank. Biol Psychiatry. 2021;89(8):817–824. doi: 10.1016/j.biopsych.2020.12.015.
  • Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512–525. doi: 10.1093/ije/dyv080.
  • Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–698. doi: 10.1038/s41588-018-0099-7.
  • Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–314. doi: 10.1002/gepi.21965.
  • Fujimoto M, Uemura M, Nakatani Y, et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: relation to severity of liver disturbance. Alcohol Clin Exp Res. 2000;24(4 Suppl):48S–54S.
  • Kawaratani H, Tsujimoto T, Douhara A, et al. The effect of inflammatory cytokines in alcoholic liver disease. Mediators Inflamm. 2013;2013:495156–495110. doi: 10.1155/2013/495156.
  • Lemmers A, Moreno C, Gustot T, et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009;49(2):646–657. doi: 10.1002/hep.22680.
  • Sawa Y, Arima Y, Ogura H, et al. Hepatic interleukin-7 expression regulates T cell responses. Immunity. 2009;30(3):447–457. doi: 10.1016/j.immuni.2009.01.007.
  • Jiang X, Lian M, Li Y, et al. The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: regulation by cholic acid-induced interleukin-7. J Autoimmun. 2018;90:64–75. doi: 10.1016/j.jaut.2018.01.007.
  • Teng D, Ding L, Cai B, et al. Interleukin-7 enhances anti-tumor activity of CD8+ T cells in patients with hepatocellular carcinoma. Cytokine. 2019;118:115–123. doi: 10.1016/j.cyto.2018.04.003.
  • Pellegrini M, Calzascia T, Toe JG, et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell. 2011;144(4):601–613. doi: 10.1016/j.cell.2011.01.011.
  • Hou HR, Pan HH, Li YK, et al. Clinical significance of ascitic interleukin-7 expression levels in cirrhotic patients complicated with spontaneous bacterial peritonitis. Zhonghua Gan Zang Bing Za Zhi. 2019;27(4):274–280. doi: 10.3760/cma.j.issn.1007-3418.2019.04.007.
  • Rueschenbaum S, Cai C, Schmidt M, et al. Translation of IRF-1 restricts hepatic interleukin-7 production to types I and II interferons: implications for hepatic immunity. Front Immunol. 2020;11:581352. doi: 10.3389/fimmu.2020.581352.
  • Mundt B, Wirth T, Zender L, et al. Tumour necrosis factor related apoptosis inducing ligand (TRAIL) induces hepatic steatosis in viral hepatitis and after alcohol intake. Gut. 2005;54(11):1590–1596. doi: 10.1136/gut.2004.056929.
  • Koehler BC, Urbanik T, Vick B, et al. TRAIL-induced apoptosis of hepatocellular carcinoma cells is augmented by targeted therapies. World J Gastroenterol. 2009;15(47):5924–5935. doi: 10.3748/wjg.15.5924.
  • Liu S, Qiu J, He G, et al. TRAIL promotes hepatocellular carcinoma apoptosis and inhibits proliferation and migration via interacting with IER3. Cancer Cell Int. 2021;21(1):63. doi: 10.1186/s12935-020-01724-8.
  • Cartland SP, Harith HH, Genner SW, et al. Non-alcoholic fatty liver disease, vascular inflammation and insulin resistance are exacerbated by TRAIL deletion in mice. Sci Rep. 2017;7(1):1898. doi: 10.1038/s41598-017-01721-4.
  • Liu FW, Wu DB, Chen EQ, et al. Expression of TRAIL in liver tissue from patients with different outcomes of HBV infection. Clin Res Hepatol Gastroenterol. 2013;37(3):269–274. doi: 10.1016/j.clinre.2012.09.009.
  • Jiang W, Wu DB, Fu SY, et al. Insight into the role of TRAIL in liver diseases. Biomed Pharmacother. 2019;110:641–645. doi: 10.1016/j.biopha.2018.12.004.
  • Jiang T, Han Z, Chen S, et al. Resistance to activation-induced cell death and elevated FLIPL expression of CD4+ T cells in a polyI: c -induced primary biliary cirrhosis mouse model. Clin Exp Med. 2009;9(4):269–276. doi: 10.1007/s10238-009-0052-2.
  • Arabpour M, Cool RH, Faber KN, et al. Receptor-specific TRAIL as a means to achieve targeted elimination of activated hepatic stellate cells. J Drug Target. 2017;25(4):360–369. doi: 10.1080/1061186X.2016.1262867.
  • Caparrós E, Francés R. The interleukin-20 cytokine family in liver disease. Front Immunol. 2018;9:1155. doi: 10.3389/fimmu.2018.01155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.