42
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Sphingomyelin Hydrolysis in the Gut and Clinical Implications in Colorectal Tumorigenesis and Other Gastrointestinal Diseases

Pages 673-683 | Published online: 08 Jul 2009

References

  • Hannun YA, Loomis CR, Merrill A, Bell RM. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 1986; 261: 12604–9.
  • Kolesnick R. 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J Biol Chem 1987; 262: 16759–62.
  • Hannun YA, Linardic CM. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1993; 1154: 223–36.
  • Zhang Y, Kolesnick R. Signaling through the sphingomyelin pathway. Endocrinology 1995; 136: 4157–60.
  • Spiegel S, Merrill AH Jr. Sphingolipid metabolism and cell growth regulation. FASEB J 1996; 10: 1388–97.
  • Mandon EC, Ehses I, Rother J, van Echter G, Sandhoff K. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine A-acyltransferase in mouse liver. J Biol Chem 1992; 267: 11144–8.
  • Rother J, van Echten G, Schwarzmann G, Sandhoff K. Biosynthesis of sphingolipids: dihydroceramide and not sphinganine is desaturated by cultured cells. Biochem Biophys Res Commun 1992; 89: 14–20.
  • Kok JW, Nikolova-Karakashian M, Klappe K, Alexander C, Merrill AH Jr. Dihydroceramide biology. Structure-specific metabolism and intracellular localization. J Biol Chem 1997; 272: 21128–36.
  • Ullman MD, Radin NS. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J Biol Chem 1974; 249: 1506–12.
  • Futerman AH, Stieger B, Hubbard AL, Pagano RE. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 1990; 265: 8650–7.
  • Spence MW. Sphingomyelinase. Adv Lip Res 1993; 26: 3–23.
  • Hassler DF, Bell RM. Ceramidases: enzymology and metabolic roles. Adv Lip Res 1993; 26: 49–53.
  • Shimojo T, Schroepfer GJ Jr. Sphingolipid base metabolism. Sphingosine-1-phosphate lyase: identification of ethanolamine-1-phosphate as product. Biochim Biophys Acta 1976; 431: 433–46.
  • Kim MY, Linardic C, Obeid L, Hannun YA. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor a and y-interferon. J Biol Chem 1991; 266: 484–9.
  • Ballou LR, Chao CP, Holness MA, Barker SC. Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. J Biol Chem 1992; 267: 20044–50.
  • Okazaki T, Bielawska A, Bell RM, Hannum YA. Role of ceramide as a lipid mediator of 1a,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 1990; 265: 15823–31.
  • Chang Y, Abe A, Shayman JA. Ceramide formation during heat shock. A potential mediator of aB-crystallin transcription. Proc Natl Acad Sci USA 1995; 92: 12275–9.
  • Haimovitz-Friedman A, Kan C-C, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994; 180: 525–35.
  • Martin SJ, Newmeyer DD, Mathias S, Farschon DM, Wang HG, Reed JC, et al. Cell-free recostitution of Fas. UV radiation- and ceramide-induced apoptosis. EMBO J 1995; 14: 5191–200.
  • Yanaga F, Watson SP. Tumor necrosis factor alpha stimulates sphingomyelinase through the 55 kDa receptor in HL-60 cells. FEBS Lett 1992; 314: 297–300.
  • Ballou LR, Laulederkind SJF, Rosloniec EF, Raghow R. Ceramide signalling and the immune response. Biochim Biophys Acta 1996; 1301: 273–87.
  • Peña L, Fuks Z, Kolesnick R. Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol 1997; 53: 615–21.
  • Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr. Inhibition of sphingolipid biosynthesis by fumonisins: implications for disease associated with Fusarium moniliforme. J Biol Chem 1991; 266: 14486–90.
  • Bezuidenhout CS, Gelderblom WCA, Gorstallman CP, Horak RH, Marasas WFO, Spiteller G, et al. Structure elucidation of the fumonisins, mycotoxins from Fusarium monilliforme. J Chem Soc Commum 1988. p. 743–5.
  • Wang E, Ross PF, Wilson TM, Riley RT, Merrill AH Jr. Alteration of serum sphingolipids upon dietary exposure of ponies to fumonisins, mycotoxins produced by Fusarium moniliforme. J Nutr 1992; 122: 1706–16.
  • Bose R, Vorheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 1995; 82: 405–14.
  • Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 3125–8.
  • Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva MY, et al. Role for ceramide in cell cycle arrest. J Biol Chem 1995; 270: 2047–52.
  • Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993; 259: 1769–71.
  • Olivera A, Buckley N, Spiegel S. Sphingomyelinase and cell permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts. J Biol Chem 1992; 267: 26121–7.
  • Joaeph CK, Byun HS, Bittman R, Kolesnick RN. Substrate recognification by ceramide-activated protein kinase. Evidence that kinase activity is proline-directed. J Biol Chem 1993; 268: 20002–6.
  • Yao B, Zhang Y, Delikat S, Mathias S, Basu S, Kolesnick R. Phosphorylation of Raf by ceramide-activated protein kinase. Nature 1995; 378: 307–10.
  • Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993; 268: 14553–6.
  • Lamge-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 1993; 260: 315–9.
  • Dobrowsky RT, Hannun YA. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem 1992; 267: 5048–51.
  • Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 1993; 268: 15523–30.
  • Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L, et al. Protein kinase ζ isoform is critical for κB-dependent promoter activation by sphingomyelinase. J Biol Chem 1994; 269: 19200–2.
  • Wolff RA, Dobrewsky RT, Bielawska A, Obeid LM, Hannun YA. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 1994; 269: 19605–9.
  • Schütze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced acidic sphingomyelin breakdown. Cell 1992; 71: 765–6.
  • Dbaibo GS, Pushkareva MY, Jayadev S, Schwardz JK, Horowitz JM, Obeid LM, et al. Retinoblastoma gene product as down-stream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci 1995; 92: 1347–51.
  • Zhang H, Buckley NE, Gibson K, Spiegel S. Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J Biol Chem 1990; 265: 76–81.
  • Kim S, Lakhani V, Costa DJ, Sharara AI, Fitz JD, Huang LW, et al. Sphingolipid-gated Ca2+ release from intracellular stores of endothelial cells is mediated by a novel Ca2+ permeable channel. J Biol Chem 1995; 270: 5266–9.
  • Mattie ME, Brooker G, Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol triphosphate-independent pathway. J Biol Chem 1994; 269: 3181–8.
  • Desai NN, Zhang H, Olivera A, Mattie ME, Spiegel S. Sphingosine-1-phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation. J Biol Chem 1992; 267: 23122–8.
  • Raines MA, Kolesnick RN, Golde DW. Sphingomyelinase and ceramide activate mitogen-activated protein kinase in myeloid HL-60 cells. J Biol Chem 1993; 268: 14572–5.
  • Wu J, Spiegel S, Sturgill TW. Sphingosine-1-phosphate rapidly activates mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J Biol Chem 1995; 270: 11484–8.
  • Zeisel SH, Char D, Sheard NF. Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J Nutr 1986; 116: 50–8.
  • Malmsten M, Bergenståhl B, Nyberg L, Odham G. Sphingomyelin from milk-characterization of liquid crystalline, liposome and emulsion properties. JAOCS 1994; 71: 1021–6.
  • Holmes MQ, Cheng W-L, Mar M-H, Fussell S, Zeisel SH. Choline and choline esters in human and rat milk and in infant formulas. Am J Clin Nutr 1996; 64: 572–6.
  • Blank ML, Cress EA, Smith ZL, Snyder F. Meats and fish consumed in the American diet contain substantial amounts of ether-linked phospholipids. J Nutr 1992; 122: 1656–61.
  • Brasitus TA, Keresztes RS. Isolation and partial characterization of basolateral membranes from rat proximal colonic epithelial cells. Biochim Biophys Acta 1983; 728: 11–9.
  • Brasitus TA, Dahiya R, Dudeja PK. Rat proximal small intestinal Golgi membrane: lipid composition and fluidity. Biochim Biophys Acta 1988; 958: 218–26.
  • Boubours J-F, Guignard H. Free ceramide, sphingomyelin, and glucosylceramide of isolated rat intestinal cells. J Lipid Res 1979; 20: 897–907.
  • Dahiya R, Brasitus TA. Distribution of glycosphingolipids and ceramide of rat small intestinal mucosa. Lipids 1986; 21: 112–6.
  • Imaizumi K, Tominaga A, Sato M, Sugano M. Effects of dietary sphingolipids on levels of serum and liver lipids in rats. Nutr Res 1992; 12: 543–8.
  • Chatterjee S. Neutral sphingomyelinase. Adv Lipid Res 1993; 26: 25–57.
  • Okazaki T, Bielawska A, Domae N, Bell RM, Hannun YA. Characterization and partial purification of a novel cytosolic magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1α,25-dihydroxyvitamin D3-induced HL-60 cell differnentiation. J Biol Chem 1994; 269: 4070–7.
  • Nilsson Å. The presence of sphingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 1969; 176: 339–47.
  • Duan R-D, Nyberg L, Nilsson Å. Alkaline sphingomyelinase activity in rat gastrointestinal tract: distribution and characteristics. Biochim Biophys Acta 1995; 1259: 49–55.
  • Duan R-D, Hertervig E, Nyberg L, Lillienau J, Hauge T, Sternby B, et al. Distribution of alkaline sphingomyelinase activity in human beings and animals: tissue and species differences. Dig Dis Sci 1996; 41: 1801–6.
  • Nyberg L, Duan R-D, Axelsson J, Nilsson Å. Identification of an alkaline sphingomyelinase activity in human bile. Biochim Biophys Acta 1996; 1300: 42–8.
  • Duan R-D, Cheng Y, Tauschel H-D, Nilsson Å. Effects of ursodeoxycholate and other bile salts on levels of rat intestinal alkaline sphingomyelinase: a potential implication in tumori-genesis. Dig Dis Sci 1998. In press.
  • Yamanaka T, Suzaki K. Acid sphingomyelinase of human brain. Purification to homogeneity. J Neurochem 1982; 38: 1753–64.
  • Yedgar S, Gatt S. Enzymic hydrolysis of sphingomyelin in the presence of bile salts. Biochem J 1980; 185: 749–54.
  • Das DVM, Cook HW, Spence MW. Evidence that neutral sphingomyelinase of cultural murine neuroblastoma cells is oriented externally on the plasma membrane. Biochim Biophys Acta 1984; 777: 339–42.
  • Duan R-D, Nilsson Å. Purification of a newly identified alkaline sphingomyelinase in human bile and effects of bile salts and phosphatidylcholine on enzyme activity. Hepatology 1997; 26: 823–30.
  • Nilsson Å. Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 1968; 164: 575–84.
  • Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH. Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 1994; 124: 702–12.
  • Nyberg L, Nilsson Å, Lundgren P, Duan R-D. Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem 1997; 8: 112–8.
  • Hofmann AF. Bile acids. In: Arias IM, Boyer JL, Fausto N, Jakoby WB, Schachter DA, Shafritz DA, editors. The liver: biology and pathology. 3rd ed. New York; Raven Press; 1994. p. 677–718.
  • Dudeja PK, Dahiya R, Brasitus T. The role of sphingomyelin synthase and sphingomyelinase in 1,2-dimethylhydrazine-induced lipid alterations of rat colonic plasma membranes. Biochim Biophys Acta 1986; 863: 309–12.
  • Merchant TE, Diamantis PM, Lauwers G, Haida T, Kasimos JN, Guillem J, et al. Characterization of malignant colon tumors with 31P nuclear magnetic resonance phospholipid and phosphatic metabolite profiles. Cancer 1995; 76: 1715–23.
  • Dillehay DL, Webb SK, Schmelz EM, Merrill AH. Dietary sphingomyelin inhibits 1,2-dimethylhydrazine induced colon cancer in CF1 mice. J Nutr 1994; 124: 615–20.
  • Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH. Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res 1996; 56: 4936–41.
  • Schmelz EM, Bushnev AS, Dillehay DL, Liotta DC, Merrill AH Jr. Suppression of aberrant colonic crypt foci by synthetic sphingomyelin with saturated or unsaturated sphingolipid base backbones. Nutr Cancer 1997; 28: 81–5.
  • Hertervig E, Nilsson Å, Nyberg L, Duan R-D. Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer 1997; 79: 448–53.
  • Duan R-D, Hertervig E, Hauge T, Nyberg L, Nilsson Å. Specific decrease in alkaline sphingomyelinase activity in human colorectal cancer and adenomas. Gastroenterology 1996; 31 Suppl 110: A509.
  • Hertervig E, Nilsson Å, Björk J, Hultkrantz R, Duan R-D. Alkaline sphingomyelinase activity is markedly decreased in familial adenomatous polyposis and colorectal adenomas: a key factor to the unrestrained cell proliferation? Gastroenterology 1998; 114: A610.
  • Campbell WJ, Spence RAJ, Parks TG. Familial adenomatous polyposis. Br J Surg 1994; 81: 1722–33.
  • Kinzler KW, Nilbert MC, Su L-K, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science 1991; 253: 661–4.
  • Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992; 359: 235–7.
  • Morin PJ, Vogelstein B, Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 1996; 93: 7950–4.
  • Bedi A, Pasricha PJ, Akhtar AJ, Barber JP, Bedi GC, Giardiellp FM, et al. Inhibition of apoptosis during development of colorectal cancer. Cancer Res 1995; 55: 1811–6.
  • Morin PJ, Vogelstein B, Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 1996; 93: 7950–4.
  • Wright SC, Zheng H, Zhong J. Tumor cell resistance to apoptosis due to a defect in the activation of sphingomyelinase and the 24 kDa apoptotic protease (AP24). fAsEB J 1995; 10: 325–32.
  • Chmura SJ, Mauceri HJ, Advani S, Heimann R, Beckett MA, Nodzenski E, et al. Decreasing the apoptotic threshold of tumor cells through protein kinase C inhibition and sphingomyelinase activation increasing tumor killing by ionizing radiation. Cancer Res 1997; 57: 4340–7.
  • Earnest DL, Holubec H, Wali RK, Jolley CS, Bissonette M, Bhattacharyya AK, et al. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res 1994; 54: 5071–4.
  • Gelderblom WCA, Kriek NPJ, Marasas WFO, Thiel PG. Toxicity and carcinogenecity of the fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis 1991; 12: 1247–51.
  • Rheeder JP, Marasas WFO, Thiel PG, Sydenham EW, Shephard GS, van Schalkwyk DJ. Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 1992; 82: 353–7.
  • Reinecher hC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, et al. Enhanced secretion of tumour necrosis factor-α, IL-6, and IL-1 β by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol 1993; 94: 174–81.
  • Reimund JM, Wittersheim C, Dumont S, Muller CD, Baumann R, Poindron P, et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease. J Clin Immunol 1996; 16: 144–50.
  • Dionne S, Hiscott J, D’Agata I, Duhaime A, Seidman EG. Quantitative PCR analysis of TNF-α and IL-1 β mRNA levels in pediatric IBD mucosal biopsies. Dig Dis Sci 1997; 42: 1557–66.
  • Cominelli F, Nast CC, Duchini A, Lee M. Recombinant interleukin-1 receptor antagonist blocks the proinflammatory activity of endogenous interleukin-1 in rabbit immune colitis. Gastroenterology 1992; 103: 65–71.
  • van Dullemen Hm, van Deventer SJ, Hommes DW, Bijl HA, Jansen J, Tygat GN, et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 1995; 109: 129–35.
  • Stack WA, Mann SD, Roy AJ, Heath P, Sopwith M, Freeman J, et al. Randomised controlled trial of CDP571 antibody to tumor necrosis factor alpha in Crohn’s disease. Lancet 1997; 349: 521–4.
  • Schmitz H, Fromm M, Boda H, Scholz P, Riecken EO, Schulzke JD. Tumor necrosis factor α induces CP and K+ secretion in human distal colon driven by prostaglandin E2. Am J Physiol 1996; 271: G669–74.
  • Ballou LR, Chao CP, Holness MA, Barker SC, Raghow W. Interleukin-1 mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide. J Biol Chem 1992; 267: 20048–50.
  • Lin LL, Wartmann M, Lin AY, Knopt JL, Seth A, Davis RJ. cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993; 72: 269–78.
  • Marotta F, Chui DH, Safran P, Rezakovic I, Zhang GG, Ideo G. Shark fin enriched diet prevents mucosal lipid abnormalities in experimental acute colitis. Digestion 1995; 56: 46–51.
  • Omodeo-Sale F, Lindi C, Marciani P, Cavatorta P, Sartor G, Masotti L, et al. Postnatal maturation of rat intestinal membrane: lipid composition and fluidity. Comp Biochem Physiol [A] 1991; 100: 301–7.
  • Yellis MB. Human milk and facilitation of gastrointestinal development and maturation. Gastroenterol Nurs 1995; 18: 11–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.