28
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Ursodeoxycholic Acid Increases the Activities of Alkaline Sphingomyelinase and Caspase-3 in the Rat Colon

Pages 915-920 | Published online: 08 Jul 2009

References

  • Leiss O, von-Bergmann K, Streicher U, Strotkoetter H. Effect of three different dihydroxy bile acids on intestinal cholesterol absorption in normal volunteers. Gastroenterology 1984;87: 144–9.
  • Mazzella G, Parini P, Festi D, Bazzoli F, Aldini R, Roda A, et al. Effects of simvastatin, ursodeoxycholic acid and simvastatin plus ursodeoxycholic acid on biliary lipid secretion and cholic acid kinetics in nonfamilial hypercholesterolemia. Hepatology 1992;15:1072–8.
  • Güldütuna S, Zimmer G, Imhof M, Bhatti S, You T, Leuschner U. Molecular aspects of membrane stabilization by ursodeoxycholate. Gastroenterology 1993;104:1736–44.
  • Yoshikawa M, Tsujii T, Matsumura K, Yamao J, Kubo R, Fukui H, et al. Immunomodilatory effects of ursodeoxycholic acid on immune responses. Hepatology 1992;16:358–64.
  • Poupon RE, Balkau B, Eschwege E, Poupon R. A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. N Engl J Med 1991;324:1548–54.
  • Jüngst D, Brenner G, Pratschke E, Paumgartner G. Low-dose ursodeoxycholic acid prolongs cholesterol nucleation time in gallbladder bile of patients with cholesterol gallstones. J Hepatol 1989;8:1–6.
  • Seraj MJ, Umemoto A, Kajikawa A, Mimura S, Kinouchi T, Ohnishi Y, et al. Effects of dietary bile acids on formation of azoxymethane-induced aberrant crypt foci in F344 rats. Cancer Lett 1997;115:97–103.
  • Earnest DL, Holubec H, Wali RK, Jolley CS, Bissonnette M, Bhattacharya AK, et al. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res 1994;54:5071–4.
  • Hannun YA, Linardic CM. Sphingolipid breakdown products: anti-proliferative and tumor-suppression lipids. Biochim Biophys Acta 1993;1154:223–36.
  • Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993;259: 1769–71.
  • Schmelz EM, Dillahay DL, Webb SK, Reiter A, Adams J, Merrill AH. Sphingomyelin consumption suppresses aberrant colonic crypt foci and increase the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2- dimethylhrdrazine: implication for dietary sphingolipids and colon carcinogenesis. Cancer Res 1996;56:4936–41.
  • Spence MW. Sphingomyelinase. Adv Lip Res 1993;26:3–23.
  • Nilsson Å. The presence of sphingomyelin- and ceramide- cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 1969;176:339–47.
  • Duan R-D, Nyberg L, Nilsson Å. Alkaline sphingomyelinase activity in rat gastrointestinal tract: distribution and characteristics. Biochim Biophys Acta 1995;1259:49–55.
  • Hertervig E, Nilsson Å, Nyberg L, Duan R-D. Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer 1997;79:448–53.
  • Hertervig E, Nilsson Å, Duan R-D, Björk J, Hultkrantz R. Alkaline sphingomyelinase activity is markedly decreased in familial adenomatous polyposis and colorectal adenomas. A key factor to the unrestrained cell proliferation? Gastroenterology 1998;114:A610.
  • Duan R-D. Sphingomyelin hydrolysis in the gut and clinical implications in colorectal tumorigenesis and other gastrointestinal diseases. Scand J Gastroenterol 1998;33:673–83.
  • Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994;371:346–7.
  • Kolesnick RN. Regulation of ceramide production and apoptosis. Ann Rev Physiol 1998;60:643–65.
  • Nyberg L, Duan R-D, Axelsson J, Nilsson Å. Identification of an alkaline sphingomyelinase activity in human bile. Biochim Biophys Acta 1996;1300:42–8.
  • Gatt S. Magnesium-dependent sphingomyelinase. Biochem Biophys Res Commun 1976;68:235–41.
  • Yoshimura S, Banno Y, Nakashima S, Takenaka K, Sakai H, Nishimura Y, et al. Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. J Biol Chem 1998;273:6921–7.
  • Kuo ML, Chen CW, Jee SH, Chuang SE, Cheng AL. Transforming growth factor β1 attenuates ceramide-induced CPP32/YAMA activation and apoptosis in human leukaemic HL-60 cells. Biochem J 1997;327: 663–7.
  • Duan R-D, Cheng Y, Tauschel H-D, Nilsson Å. Effects of ursodeoxycholate and other bile salts on levels of rat intestinal alkaline sphingomyelinase. A potential implication in tumori- genesis. Dig Dis Sci 1998;43:26–32.
  • Barnwell SG, Lowe PJ, Coleman R. Effect of taurochenode- oxycholate or tauroursodeoxycholate upon biliary output of phospholipids and plasma membrane enzymes and the extent of cell damage in isolated perfused rat livers. Biochim J 1983;216:107–11.
  • Koutsos MI, Shiff SJ, Rigas B. The effect of ursodeoxycholic and lithocholic acid on cell cycle and apoptosis in human colon adenocarcinoma cells. Gastroenterology 1995;108 Suppl:A492.
  • Krajewska M, Wang HG, Krajewski S, Zapata JM, Shabaik A, Gascoyne R, et al. Immunohistochemical analysis of in vivo patterns of expression of CPP32 (caspase-3), a cell death protease. Cancer Res 1997;57:1605–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.