92
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Experimentally Induced Motion Sickness in Fish: Possible Role of the Otolith Organs

, , &
Pages 488-492 | Received 01 Jul 2004, Accepted 01 Jul 2004, Published online: 04 May 2010

  • von Baumgarten RJ, Thümler RA. A model for vestibular function in altered gravitational states Life Sci Space Res 1978; 17: 161-170
  • Salamat MS, Ross MD, Peacor DR. Otoconial formation in the fetal rat Ann Otol Rhinol Laryngol 1980; 89: 229-238
  • McKenzie RA. Codfish in captivity. Progress reports of the Atlantic biological station, Vol. 16, Note No. 7, Halifax, Canada, 1935: 7-10.
  • Yegorov BB, Samarin GI. Possible change in the paired operation of the vestibular apparatus during weightlessness Kosm Biol Aviakosm 1970; 4: 85-86
  • von Baumgarten R, Baldrigi G, Schillinger GL. Vestibular behavior of fish during diminished G-force and weightlessness Aerospace Med 1972; 43: 626-632
  • Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH. Motion sickness: only one provocative conflict? Brain Res Bull 1998; 47: 481-487
  • Reason JT. Motion sickness adaptation: a neural mismatch model J R Soc Med 1978; 71: 819-829
  • Ijiri K How the four fish astronauts were selected 1995; 39-50Ijiri K (ed.)
  • Bles W, Bos JE, Kruit H. Motion sickness Curr Opin Neurol 2000; 13: 19-25
  • Sjöberg AA. Experimentelle Studien über den Auslösemechanismus der Seekrankheit Acta Otolaryngol Suppl (Stockh) 1931; 14: 1-136
  • Wetzig J. Untersuchungen über das Schwimmverhalten einseitig entstateter Fische unter kurzzeitiger Einwirkung von Scherelosigkeit [PhD dissertation]. Mainz, Germany: University of Mainz, 1983.
  • Scherer H, Helling K, Hausmann S, Clarke AH. On the origin of interindividual susceptibility to motion sickness Acta Otolaryngol (Stockh) 1997; 117: 149-153
  • Helling K, Hausmann S, Flöttmann T, Scherer H. Untersuchungen zur interindividuell unterschiedlichen Kinetoseempfindlichkeit HNO 1997; 45: 210-215
  • Mann S, Parker SB, Ross MD, Skarnulis AJ, Williams RJP. The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study Proc R Soc Lond 1983; 218: 415-424
  • von Holst E. Die Arbeitsweise des Statolithenapparates bei Fischen Z Vergl Physiol 1950; 32: 60-120
  • Lychakov DV, Lavrova EA. Structure of the vestibular apparatus and ionic composition of the body of Xenopus laevis larvae as affected by weightlessness Kosm Biol Aviakosm 1985; 19: 48-52
  • Anken RH, Kappel T, Rahmann H. Morphometry of fish inner ear otoliths after development at 3g hypergravity Acta Otolaryngol (Stockh) 1998; 118: 534-539
  • Watanabe S, Takabayashi A, Tanaka M, Yanagihara D. Neurovestibular physiology in fish Adv Space Biol Med 1991; 1: 99-128
  • Diamond SG, Markham CH. Validating the hypothesis of otolith asymmetry as a cause of space motion sickness Ann N Y Acad Sci 1992; 656: 725-731

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.