90
Views
55
CrossRef citations to date
0
Altmetric
Research Article

Cellular and Molecular Pathology of Prostate Cancer Precursors

, , , , , & show all
Pages 19-43 | Published online: 09 Jul 2009

REFERENCES

  • McNeal JE, Bostwick DG. Intraductal dysplasia: A premalignant lesion of the prostate. Hum Pathol 1986; 17: 64–71.
  • Bostwick DG. High grade prostatic intraepithelial neoplasia: The most likely precursor of prostate cancer. Cancer 1995; 75: 1823–36.
  • Bostwick DG, Pacelli A, Lopez-Beltran A. Molecular biology of prostatic intraepithelial neoplasia. Prostate 1996; 29: 117–34.
  • Qian J, Wollan P. Bostwick DG. The extent and multicentricity of high grade intraepithial neoplasia in clinically localized prostatic adenocarcinoma. Hum Pathol 1997; 28: 143–8.
  • Emmert-Buck MR, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, et al. Allelic loss on chromosome 8p12-21 in microdissected prostatic intra-epithelial neoplasia. Cancer Res 1995; 55: 2959–62.
  • Sakr WA, Macoska JA, Benson PD, Grignon DJ, Wolman SR, Pontes JE, et al. Allelic loss in locally metastatic, multisampled prostate cancer. Cancer Res 1994; 54: 3273–9.
  • Qian JQ, Bostwick DG, Takahashi S, Borell TJ, Herath if, Lieber MM, et al. Chromosomal anomalies in prostatic intraepithelial neoplasia and carcinoma de-tected by fluorescence in situ hybridization. Cancer Res 1995; 55: 5408–14.
  • Cunningham IM, Shan A, Wick MJ, McDonnell SK, Schaid DJ, Tester DJ, et al. Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res 1996; 56: 4475–82.
  • Jenkins RB, Qian J, Lieber MM, Bostwick DG. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carci-noma by fluorescence in situ hybridization (FISH). Cancer Res 1997; 57: 524–31.
  • Bostwick DG. Prospective origins of prostate carcino-ma. Prostatic intraepithelial neoplasia and atypical adenomatous hyperplasia. Cancer 1996; 78: 330–6.
  • Nagle RB, Brawer MK, Kittelson J, Clark V. Pheno-typic relationship of prostatic intraepithelial neoplasia to invasive prostatic carcinoma. Am J Pathol 1991; 138: 119–28.
  • Wemert N, Seitz G. Immunohistochemical investiga-tion in different cytokeratins and vimentin in the prostate from the fetal period up to adulthood and in prostate carcinoma. Pathol Res Pract 1987; 182: 617–26.
  • Xue Y, Smedts F, Debruyne FM, de la Rosette JJ, Schalken JA. Identification of intermediate cell types of keratin expression in the developing human prostate. Prostate 1998; 34: 292–301.
  • Di Sant'Agnese PA. Neuroendocrine differentiation in carcinoma of the prostate. Diagnosis, prognostic and therapeutic implications. Cancer 1992; 70: 254–68.
  • Di Sant'Agnese PA, Cockett AT. Neuroendocrine differentiation in prostatic malignancy. Cancer 1996; 15: 357–61.
  • Bonkhoff H. Neuroendocrine cells in benign and malignant prostate tissue. Morphogenesis, proliferation and androgen receptor status. Prostate 1998; 8: 18–22.
  • Bonkhoff H, Remberger K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 1996; 28: 98–106.
  • Bonkhoff H. Role of the basal cells in premalignant changes of the human prostate: A stem cell concept for the development of prostate cancer. Eur Urol 1996; 30: 201–5.
  • Bonkhoff H, Remberger K. Morphogenetic concepts of normal and abnormal growth of the human prostate. Virchows Arch 1998; 433: 195–202.
  • Foster CS, Ke Y. Stem cells in prostatie epithelia. Int J Exp Pathol 1997; 78: 311–29.
  • Pierce GB. Neoplasms, differentiation and mutations. Am J Pathol 1974; 77: 103–18.
  • Pollen CS, Loeffler M. Stem cells: attributes, cycle, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990; 110: 1001–20.
  • Verhagen AP, Aalders TW, Ramaekers FC, Debruyne FM, Sehalken JA. Differential expression of keratins in the basal and luminal compartments of rat prostatie epithelium during degeneration and regeneration. Prostate 1988; 13: 25–38.
  • De Marzo AM, Nelson WG, Meeker AK, Coffey DS. Stem cell features of benign and malignant prostate epithelial cells. J Urol 1998; 160: 2381–92.
  • De Marzo AM, Marehi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatie eareinogenesis. Am J Pathol 1999; 155: 1985–92.
  • Verhagen AP. Colocalization of basal and luminal cell-type eytokeratins in human prostate cancer. Cancer Res 1992; 52: 6182–7.
  • Van der Kwast TH, Tetu B, Suburu ER, Gomez J, Iemay M, Labrie F. Cycling activity of benign prostatie epithelial cells during long-term androgen blockade: evidence for self-renewal of luminal cells. J Pathol 1998; 186: 406–9.
  • Van der Kwast TH, Labrie F, Tetu B. Prostatie intraepithelial neoplasia and endocrine manipulation. Eur Urol 1999; 35: 508–10.
  • Montironi R, Magi-Galluzzi C, Fabris G. Apoptotie bodies in prostatie intraepithelial neoplasia and pro-static adenocareinoma following total androgen abla-tion. Pathol Res Praet 1995; 191: 873–80.
  • Evans GS, Chandler JA. Cell proliferation studies in the rat prostate: The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 1987; 4: 339–51.
  • Van der Kwast TH, Labrie F, Tetu B. Persistence of high-grade prostatie intra-epithelial neoplasia under combined androgen blockade therapy. Hum Pathol 1999; 30: 1503–7.
  • Bostwick DG, Shan A, Qian J, Darson M, Maihle NJ, Jenkins RB, et al. Independent origin of multiple foci of prostatie intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. Cancer 1998; 83: 1995–2002.
  • Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatie eareinogenesis. Proe Natl Aead Sei USA 1994; 91: 11733–7.
  • Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS, et al. Development, progres-sion, and androgen-dependence of prostate tumors in probasin-large T antigen transgenie mice: a model for prostate cancer. Lab Invest 1998; 78: 319–33.
  • Cheng L, Shan A, Cheville JC, Qian J, Bostwick DG. Atypical adenomatous hyperplasia of the prostate: a premalignant lesion? Cancer Res 1998; 58: 389–91.
  • Myers RB, Grizzle WE. Biomarker expression in prostatie intraepithelial neoplasia. Eur Urol 1996; 30: 153–66.
  • Bostwick DG, Amin MB, Dundore P, Marsh W, Schultz DS. Architectural patterns of high grade Scand J Urol Nephrol Suppl 205 prostatie intraepithelial neoplasia. Hum Pathol 1993; 24: 298–310.
  • Bonkhoff H, Stein U, Remberger K. The proliferative function of basal cells in the normal and hyperplastie human prostate. Prostate 1994; 24: 114–8.
  • Ware JL. Prostate cancer progression. Implications of histopathology. Am J Pathol 1994; 145: 893–993.
  • Bonkhoff H, Fixemer T, Remberger K. Relation between Bel-2, cell proliferation and the androgen receptor status in prostate tissue and precursors of prostate cancer. Prostate 1998; 34: 251–8.
  • Bonkhoff H, Fisemer T, Hunsieker I, Remberger K. Estrogen receptor expression in prostate cancer and premalignant prostatie lesions. Am J Pathol 1999; 155: 641–7.
  • Bonkhoff H, Stein U, Welter C, Remberger K. Differential expression of the pS2 protein in the human prostate cancer: association with premalignant changes and neuroendoerine differentiation. Hum Pathol 1995; 26: 824–8.
  • Montironi R, Bostwick DG, Bonkhoff H, Coekett A, Helpap B, Troneoso P. et al. Origins of prostate cancer. Cancer 1996; 78: 362–5.
  • Janssen PJ, Brinkmann AO, Boersma WJ, Van der Kwast TH. Immunohistochemical detection of the androgen receptor with monoclonal antibody F39.4 in routinely processed, paraffin-embedded human tissues after microwave pre-treatment. J Histoehem Cytoehem 1994; 42: 1169–75.
  • Bonkhoff H, Stein U, Remberger K. Multidirectional differentiation in the normal, hyperplastie and neo-plastic human prostate: Simultaneous demonstration of cell specific epithelial markers. Hum Pathol 1994; 25: 42–6.
  • Bonkhoff H. Analytical molecular pathology of epithelial-stromal interactions in the normal and neoplastie prostate. Anal Quant Cytol Histol 1998; 20: 437–42.
  • Knox JD, Cress AE, Clark V, Manriquez L, Affinito KS, Dalkin BL, et al. Differential expression of extraeellular matrix molecules and the alpha 6-integrins in the normal and neoplastie prostate. Am J Pathol 1994; 145: 167–74.
  • Nagle RB, Hao J, Knox JD, Dalkin BL, Clark V, Cress AE. Expression of hemidesmosomal and extraeellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol 1995; 146: 1498–507.
  • Bonkhoff H, Stein U, Remberger K. Differential expression of -6 and -2 very late antigen integrins in the normal, hyperplastie and neoplastie human pros-tate. Simultaneous demonstration of cell surface receptors and their extraeellular ligands. Hum Pathol 1993; 24: 243–8.
  • Bonkhoff H, Wemert N, Dhom G, Remberger K. Distribution of basement membranes in primary and metastatic carcinomas of the prostate. Hum Pathol 1992; 23: 934–9.
  • Bonkhoff H, Wemert N, Dhom G, Remberger K. Basement membranes in fetal, adult normal, hyper-plastic and neoplastie human prostate. Virehows Arch A: Pathol 1991; 418: 375–81.
  • Phler C, Fixemer T, Jung V, Dooley S, Remberger K, Bonkhoff H. In situ analysis of genes coding collagen IV al chain, laminin bl chain, and 5-laminin in prostate tissue and prostate cancer. Increased basement membrane gene expression in metastatic lesions. Prostate 1998; 36: 143–50.
  • Macoska JA, Micale MA, Sakr WA, Benson PD, Wolman SR. Extensive genetic alterations in prostate cancer revealed by dual PCR and FISH analysis. Genes Chromosomes Cancer 1993; 8: 88–97.
  • Trapman J, Sleddens HF, van-der-Weiden MM, Dinjens WN, Konig JJ, Schroder FH, et al. Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8587. Cancer Res 1994; 54: 6061–4.
  • Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, et al. Allelic loss of chromosome 16q and chromosome 10q in human prostate cancer. Proc Natl Acad Sci USA 1990; 87: 8751–5.
  • Zenldusen JC, Thompson JC, Troncoso P. Kagan J, Conti CJ. Loss of heterozygosity in human primary prostate carcinoma: A possible tumor suppressor gene at 7q31.1. Cancer Res 1994; 54: 6370–3.
  • Ittmann MM. Loss of heterozygosity on chromosome 10 and 17 in clinically localized prostate carcinoma. Prostate 1996; 28: 275–81.
  • Ittmann MM, Wieczorek R. Alterations of the retino-blastoma gene in clinically localized, stage B prostate adenocarcinoma. Hum Pathol 1996; 27: 28–34.
  • Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res 1996; 56: 1142–5.
  • Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT, et al. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 1995; 55: 1002–5.
  • Cheng L, Song SY, Pretlow TG, Abdul-Karim FW, Kung H-J, Dawson DV, et al. Evidence of independent origin of multiple tumors from patients with prostate cancer. J Natl Cancer Inst 1998; 90: 233–7.
  • Bandyk MG, Zhao L, Troncoso P. Pisters LL, Palmer JL, Voneschenbach AC, et al. A potential cytogenetic marker of human prostate cancer progression. Genes Chromosomes Cancer 1994; 9: 19–27.
  • Takahashi S, Qian J, Brown JA, Alcaraz A, Bostwick DG, Lieber MM, et al. Potential markers of prostate cancer aggressiveness detected by fluorescence in situ hybridization. Cancer 1994; 54: 3574–9.
  • Latil A, Baron JC, Cussenot O, Fournier G, Soussi T, Boccon-Gibod L, et al. Genetic alterations in localized prostate cancer: Identification of a common region of deletion on chromosome arm 18q. Genes Chromo-somes Cancer 1994; 11: 119–25.
  • Vocke CD, Pozzatti RO, Bostwick DG, Florence CD, Jennings SB, Strup SE, et al. Analysis of 99 micro-disected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p12-21. Cancer Res 1996; 56: 2411–6.
  • Cher ML, Ito T, Weidner N, Carroll PR, Jensen RH. Mapping of regions of physical deletion on chromo-some 16q in prostate cancer cells by fluorescence in situ hybridization (FISH). J Urol 1995; 153: 249–54.
  • Alers CA, Krijtenburg PJ, Vissers KJ, Bosman FT, van der Kwast TH, Dekken H. Interphase etyogenetics of prostatic adenocarcinoma and precursor lesions: ana-lysis of 25 radical prostatectomies and 17 adjacent prostatic intraepithelial neoplasms. Genes Chromo-somes Cancer 1995; 12: 241–50.
  • Alcaraz A, Takahashi S, Brown JA, Herath IF, Bergstralh E, Larson-Keller J, et al. Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Res 1994; 54: 3998–4002.
  • Brown JA, Alcaraz A, Takahashi S, Persons DL, Lieber MM, Jenkins RB. Chromosomal aneusomies detected by fluorescence in situ hybridization analysis in clinically localized prostate carcinoma. J Urol 1994; 152: 1157–62.
  • Dahiya R, McCarville H, Hu WX, Lee C, Chui RM, Kaur G, et al. Chromosome 3p24-26 and 3p22-12 loss in human prostatic adenocarcinoma. Int J Cancer 1997; 71: 20–5.
  • Latil A, Cussenot O, Fournier G, Baron JC, Lidereau R. Loss of heterozygosity at 7q31 is a frequent and early event in prostate cancer. Clin Cancer Res 1995; 1: 1385–9.
  • Latil A, Fournier G, Cussenot O, Lidereau R. Differen-tial chromosome allelic imbalance in the progression of human prostate cancer. J Urol 1996; 156: 2079–83.
  • Cooney KA, Wetzel JC, Consolino CM, Wojno KJ. Identification and characterization of proximal 6q deletions in prostate cancer. Cancer Res 1996; 56: 4150–3.
  • Greene DR, Wheeler TM, Egawa S, Dunn JK, Scardino PT. A comparison of the morphological features of cancer arising in the transition zone and in the peri-pheral zone of the prostate. J Urol 1991; 146: 1069–76.
  • Konishi N, Hiasa Y, Matsuda H, Tao M, Tsuzuki T, Hayashi I, et al. Intratumor cellular heterogeneity and alterations in ras oncogene and p53 tumor suppressor gene in human prostate carcinoma. Am J Pathol 1995; 147: 1112–22.
  • Greene DR, Rogers E, Wessels EC, Wheeler TM, Taylor SR, Santucci RA, et al. Some small prostate cancers are nondiploid by nuclear image analysis: Correlation of deoxyribonucleic acid ploidy status and pathological features. J Urol 1994; 151: 1301–7.
  • Kerr JFR, Winterford CM, Harmon BV. Apoptosis. Cancer 1993; 73: 2013–26.
  • Brothman AR, Peehl DM, McNeal JE. Frequency and pattern of karyotypic anomalies in human prostate cancer. Cancer Res. 1990; 50: 3795–803.
  • Lundgren R, Mandahl N, Heim S, Limon J, Henrikson H, Mitelman F. Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Genes, Chromosomes and Cancer 1992; 4: 16–24.
  • Zitzelsberger H, Szucs S, Weier HU, Lehmann L, Braselmann H, Enders S, et al. Numerical abnormali-ties of chromosome 7 detected by fluorescence in situ hybridization (FISH) on paraffin-embedded tissue sections with centromere-specific DNA probes. J Pathol 1994; 172: 325–35.
  • Takahashi S, Alcaraz A, Brown JA, Borell TJ, Herath JF, Bergstralj EJ, et al. Aneusomies of chromosomes 8 and Y detected by fluorescence in situ hybridisation are prognostic markers for pathologic stage C (pT3N0M0) prostate carcinoma. Clin Cancer Res 1996; 2: 137–45.
  • Zenklusen JC, Bieche I, Liereau R, Conti CJ. (C-A)„, microsatellite repeat D75522 is the most commonly deleted region in human primary breast cancer. Proc Natl Acad Sci USA 1994b; 91: 12155–8.
  • Takahashi S, Shan A, Ritland SR, Delacey K, Bostwick DG, Lieber MM, et al. Frequent loss of heterozygosity at 7q31.1 in primary prostate cancer in association with tumor aggressiveness and progression. Cancer Res 1995; 55: 4114–9.
  • Collard JG, van de Poll M, Seheffer A, Roos E, Hopman ABM, Geurts van Kessel ABM, et al. Location of genes involved in invasion and metastasis on human chromosome 7. Cancer Res 1987; 47: 6666–70.
  • Zenldusen JC, Thompson JC, Klein-Szanto AJP, Conti CJ. Frequent loss of heterozygosity in human primary squamous cell and colon carcinomas at 7q331.1: Evidence for a broad range tumor suppressor gene. Cancer Res 1995; 55: 1347–50.
  • Jenkins RB, Qian JC, Lee HK, Huang HJ, Hirasawa K, Bostwick DG, et al. A molecular cytogenetie analysis of 7q31 in prostate cancer. Cancer Res 1998; 58: 759–66.
  • Jenkins RB, Takahashi S. Delaeey KA, Bergstralh E, Lieber MM. Prognostic significance of allelic imbal-ance of chromosome arms 7q, 16q and 18q in stage T3MOMO prostate cancer. Genes Chromosomes Cancer 1998; 21: 131–43.
  • Cheng L, Shan A, Qian J, Darson M, Thibodeaul SN, Jenkins RB, et al. Genetic heterogeneity in prostatie intraepithelial neoplasia and carcinoma. Mod Pathol 1998; 11: A78.
  • MaeGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R. Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 1994; 10: 151–9.
  • Maeoska JA, Trybus TM, Benson PD, Sakr WA, Grifon DJ, Wojno KD, et al. Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 1995; 55: 5390–5.
  • Maeoska JA, Trybus TM, Sakr WA, Wolf MC, Benson PD, Powell IJ, et al. Fluorescence in situ hybridization analysis of 8p allelic loss and chromosome 8 instability in human prostate cancer. Cancer Res 1994; 54: 3824–30.
  • Bova GS, Carter BS, Bussemakers MJG, Emi M, Fujiwara Y, Kyprianou N, et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993; 53: 3869–73.
  • Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomie hybridization and allelotyping. Cancer Res 1996; 56: 3091–102.
  • Visakorpi T, Kallioniemi AH, Syvanen AC, Hyytinen ER, Karhu R, Tammela T, et al. Genetic changes in primary and recurrent prostate cancer by comparative genomie hybridization. Cancer Res 1995; 55: 342–7.
  • Van der Berg C, Guan XY, von Hoff D, Jenkins R, Bittner E, Griffin C, et al. DNA sequence amplification in human prostate cancer identified by chromosome microdissection: potential prognostic implications. Clin Cancer Res 1995; 1: 11–8.
  • Paradis V, Dargere D, Laurendeau I, Benoit G, Vidaud M, Jardin A, et al. Expression of the RNA component of human telomerase (hTR) in prostate cancer, prostatie intraepithelial neoplasia, and normal prostate tissue. J Pathol 1999; 189: 213–8.
  • Koeneman KS, Pan CX, Jin JK, Pyle JM, Flanigan RC, Shankey TV, et al. Telomerase activity, telomere length and DNA ploidy in prostatie intraepithelial neoplasia (PIN). J Urol 1998; 160: 1533–9.
  • Zhang WB, Kapusta LR, Slingerland JM, Klotz LH. Telomerase activity in prostate cancer, prostatie intra-epithelial neoplasia and benign prostatie epithelium. Cancer Res 1998; 58: 619–21.
  • Krajewski M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, et al. Immunohistochemical analysis of bel-2, bax, bel-X and me-1 expression in prostate cancers. Am J Pathol 1996; 148: 1567–76.
  • Colombel M, Symmans G, Gil S, O'Toole K, Chopin D, Benson M, et al. Detection of the apoptosis-suppressing oneoprotein bel-2 in hormone-refractory human prostate cancer. Am J Pathol 1993; 143: 390–400.
  • Baltaei S, Orhan D, Ozer G, Tolunay O, Gogous O. Bel-2 proto-oneogene expression in low- and high-grade prostatie intraepithelial neoplasia. Br J Urol Int 2000; 85: 155–9.
  • Erdamar S, Yang G, Harper JW, Lu X, Kahan MW, Thompson TC, et al. Levels of expression of p27KIP1 protein in human prostate and prostate cancer: an immunohistochemical analysis. Mod Pathol 1999; 12: 751–5.
  • Miet SM, Neyra M, Jaques R, Dubemard P. Revol AA, Mareais C. RER(±) phenotype in prostate intra-epithelial neoplasia associated with human prostate-carcinoma development. Int J Cancer 1999; 82: 635–9.
  • Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC. Family history and the risk of prostate cancer. Prostate 1990; 17: 337–47.
  • Cannon L, Bishop DT, Skolnick M, Hunt S, Lyon it, Smart CR. Genetic epidemiology of prostate cancer in the Utah Mormon genealogy. Cancer Surv 1982; 1: 47–69.
  • Grönberg H, Damber L, Damber J-E. Familial prostate cancer in Sweden. A nationwide register cohort study. Cancer 1996; 77: 138–43.
  • Woolf CM. An investigation of familial aspects of carcinoma of the prostate. Cancer 1960; 13: 739–44.
  • Krain LS. Some epidemiological variables in prostatie carcinoma in California. Prey Med 1974; 3: 154–9.
  • Meikle AW, Smith JA, West DW. Familial factors affecting prostatie cancer risk and plasma sex-steroid levels. Prostate 1985; 6: 121–8.
  • Fineham SM, Hill GB, Hanson J, Wijayasinghe C. Epidemiology of prostatie cancer: a ease-control study. Prostate 1990; 17: 189–206.
  • Ghadirian P. Cadotte M, Lacroix A, Perret C. Family aggregation of cancer of the prostate in Quebec: the tip of the iceberg. Prostate 1991; 19: 43–52.
  • Spitz MR, Currier RD, Fueger JJ, Babaian RJ, Newell GR. Familial patterns of prostate cancer: a ease-control analysis. J Urol 1991; 146: 1305–7.
  • Cannon-Albright LA, Thomas A, Goldgar DE, Ghola-mi K, Rowe K, Jacobsen M, et al. Familiarity of cancer in Utah. Cancer Res 1994; 54: 2378–85.
  • Goldgar DE, Easton DF, Cannon-Albright LA, Skol-nick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 1994; 86: 1600–8.
  • Aprikan AG, Bazinet M, Plante M, Meshref A, Trudel C, Aronson S, et al. Family history and the risk of prostatie carcinoma in a high risk group of urologieal patients. J Urol 1995; 154: 404–6.
  • Monroe KR, Yu MC, Kolonel LN, Coetzee GA, Wilkens LR, Ross RK, et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med 1995; 1: 827–9.
  • Narod SA, Dupont A, Cusan L, Diamond P, Gomez it, Suburu R, et al. The impact of family history on early detection of prostate cancer. Nat Med 1995; 1: 99–101.
  • Whittemore AS, Wu AK Kolonel LN, John EM, Gallagher RP, Howe GR, et al. Family history and prostate cancer risk in black, white and Asian men in the United States and Canada. Am J Epidemiol 1995; 141: 732–40.
  • Hayes RB, Liff IM, Pottem LM, Greenberg RS, Schoenberg JB, Schwartz AG, et al. Prostate cancer risk in US blacks and whites with a family history of cancer. Int J Cancer 1995; 27: 361–4.
  • Keetch DW, Rice JP, Suarez BK, Catalona WJ. Familial aspects of prostate cancer: a case control study. J Urol 1995; 154: 2100–2.
  • Lesko SM, Rosenberg L, Shapiro S. Family history and prostate cancer risk. Am J Epidemiol 1996; 144: 1041–7.
  • Ghadirian P, Howe GR, Hislop TG, Maisonneuve P. Family history of prostate cancer: a multi-center case-control study in Canada. Int J Cancer 1997; 70: 679–81.
  • Bratt O, Kristoffersson U, Lundgren R, Olsson H. The risk of malignant tumours in first-degree relatives of men with early onset prostate cancer: a population-based cohort study. Eur J Cancer 1997; 33: 2237–40.
  • Smith C. Heritability and concordance rates in mono-zygotic twins. Ann Hum Genet 1970; 34: 85.
  • Page WF, Braun MM, Partin AW, Caporaso N, Walsh P. Heredity and prostate cancer: A study of world war II veteran twins. Prostate 1997; 33: 240–5.
  • Neuhausen SL, Skolnick MH, Cannon-Albright L. Familial prostate cancer studies in Utah. Br J Urol 1997; 79: 15–20.
  • Grönberg H, Wiklund F, Damber J-E. Age specific risks of familial prostate carcinoma. A basis for screening recommendation in high risk populations. Cancer 1999; 86: 477–83.
  • Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh P. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 1992; 89: 3367–71.
  • Grönberg H, Damber L, Damber JE, Iselius L. Segre-gation analysis of prostate cancer in Sweden-Support for a dominant inheritance. Am J Epidemiol 1997; 146: 552–7.
  • Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, et al. A genome wide search reveals a major susceptibility locus for prostate cancer on chromosome 1. Science 1996; 274: 1371–3.
  • Cooney K, McCarthy J, Lange E, Huang L, Miesfeldt S, Montie J, et al. Prostate cancer susceptibility locus on chromosome lq: a confirmatory study. J Natl Cancer Inst 1997; 89: 955–9.
  • Hsieh CL, Oakley-Girvan I, Gallagher RP, Wu AFT, Kolonel LN, The CZ, et al. Re: prostate cancer susceptibility locus on chromosome lq: a confirmatory study. J Natl Cancer Inst 1997; 89: 1893–4.
  • McIndoe RA, Stanford JL, Gibbs M, Jarvik GP, Brandzel S, Neal CL, et al. Linkage analysis of 49 high risk families does not support a common familial prostate cancer-susceptibility gene at 1q24-25. Am J Hum Genet 1997; 61: 347–53.
  • Eeles RA, Durocher F, Edwards S, Teare D, Badzioch M, Hamoudi R, et al. Linkage analysis of chromosome lq markers in 136 prostate cancer families. Am J Hum Genet 1998; 62: 653–8.
  • Berthon P. Valeri A, Cohen-Akenine A, Drelon E, Paiss T, Wohr G, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet 1998; 62: 1416–24.
  • Grönberg H, Xu J, Smith JR, Carpten JD, Isaacs SD, Freije D, et al. Early age at diagnosis in families providing evidence of linkage to the hereditary prostate cancer locus (HPC1) on chromosome 1. Cancer Res 1997; 57: 4707–9.
  • Grönberg H, Isaacs SD, Smith JR, Carpten JD, S BG, Freije D, et al. Characteristics of prostate cancer in families potentially linked to the hereditary prostate cancer 1 (HPC1) locus. JAMA 1997; 278: 1251–5.
  • Kupelian PA, Kupelian VA, Witte JS, Macklis R, Klein EA. Family history of prostate cancer in patients with localized prostate cancer: an independent pre-dictor of treatment outcome. J Clin Oncol 1997; 15: 1478–80.
  • Grönberg H, Smith J, Emanuelsson M, Jonsson B-A, Bergh A, Carpten J, et al. In Swedish families with hereditary prostate cancer, linkage to the HPC1 locus on chromosome 1q24-25 is restricted to families with early-onset prostate cancer. Am J Hum Genet 1999; 65: 134–40.
  • Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998; 20: 175–9.
  • Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S, Goode EL, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 1999; 64: 776–87.
  • Qian J, Jenkins RB, Bostwick DG. Genetic and chromosomal alterations in prostatic intraepithelial neoplasia and carcinoma detected by fluorescence in situ hybridization. Eur Urol 1999; 35: 479–83.
  • Zitzelberger H, Kulka U, Lehmann L, Walch A, Smith J, Aubele M, et al. Genetic heterogeneity in a prostatic carcinoma and associated intraepithelial neoplasia as demonstrated by combined use of laser-microdissec-tion, degenerate oligonucleotide primed PCR and comparative genomic hybridization. Virchows Arch 1998; 433: 297–304.
  • Qian JQ, Jenkins RB, Bostwick DG. Determination of gene and chromosome dosage in prostatic intraepi-thelial neoplasia and carcinoma. Anal Quant Cytol Histol 1998; 20: 373–80.
  • Bartels PH, Montironi R, Hamilton PW, Thompson D, Vaught L, Bartels HG. Nuclear chromatin texture in prostatic lesions. I. PIN and adenocarcinoma. Anal Quant Cytol Histol 1998; 20: 389–96.
  • Bartels PH, Montironi R, Hamilton PW, Thompson D, Vaught L, Bartels HG. Nuclear chromatin texture in prostatic lesions. II. PIN and malignancy associated changes. Anal Quant Cytol Histol 1998; 20: 397–406.
  • Shih C, Shilo B, Goldford MP, Dannenberg S, Weinberg RA. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc Natl Acad Sci USA 1979; 76: 5714–8.
  • Viola MV, Fromwitz F, Oravez S. Deb S. Finkel G, Lundy J, et al. Expression of ras oncogene p21 in prostate cancer. N Engl J Med 1986; 314: 133–7.
  • Peehl DM, Wehner N, Stamey TA. Activated Ki-ras oncogene in human prostatic adenocarcinoma. Prostate 1987; 10: 281–9.
  • Carter BS, Epstein JI, Isaacs WB. ras Gene mutations in human prostate cancer. Cancer Res 1990; 50: 6830–2.
  • Cooke DB, Quarmby VE, Mickey DD, Isaacs JT, French FS. Oncogene expression in prostate cancer: Dunning R3327 rat dorsal prostatic adenocarcinoma system. Prostate 1988; 13: 263–72.
  • Stanbridge EJA. Human tumor suppressor genes. Annual Review of Genetics 1990; 24: 615–57.
  • Yunis JJ, Ramsay N. Retinoblastoma and subband deletion of chromosome 13. Am J Dis Childhood 1978; 132: 161–3.
  • Friend SH, Bemards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323: 643–6.
  • Benedict WF, Xu HJ, Hu SX, Takahashi R. Role of the retinoblastoma gene in the initiation and progression of human cancer. J Clin Invest 1990; 85: 988–93.
  • Bookstein R, Rio P, Madreperla SA, Hong F, Allred C, Grizzle WE, et al. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 1990; 87: 7762–6.
  • Mercer WE, Avignolo C, Baserga R. Role of the p53 protein in cell proliferation as studied by microinjec-tion of monoclonal antibodies. Mo Cell Biol 1984; 4: 276–81.
  • Levine AJ, Momand J. Tumor suppressor genes: The p53 and retinoblastoma sensitivity genes and gene products. Biochim Biophys Acta 1990; 1032: 119–36.
  • Ratter V, Abutbul H, Ben-Ze'ev A. p53 transforma-tion-related protein accumulates in the nucleus of transformed fibroblasts in association with the chro-matin and is found in the cytoplasm of non-transformed fibroblasts. EMBO Journal 1983; 2: 1041–7.
  • Hinds P, Finlay C, Levine AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 1989; 63: 739–46.
  • Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989; 57: 1083–93.
  • Foster CS, McLoughlin J, Bashir I, Abel PD. Markers of the metastatic phenotype in prostate cancer. Hum Pathol 1992; 23: 381–94.
  • Mottaz AE, Markwalder R, Fey MF, Klima I, Merz VW, Thalmann GN, et al. Abnormal p53 expression is rare in clinically localized human prostate cancer: comparison between immunohistochemical and mol-ecular detection of p53 mutations. Prostate 1997; 31: 209–15.
  • Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al. KAI 1, a metastasis suppressor gene for prostate cancer on human chromo-some 11p11.2. Science 1995; 286: 884–6.
  • Sharon N, Lis H. Lectins as cell recognition molecules. Science 1989; 246: 227–34.
  • Charpin C, Garcia S, Bouvier C, Devictor B, Andrac L, Choux R, et al. Automated and quantitative immuno-cytochemical assays of CD44v6 in breast carcinomas. Hum Pathol 1997; 28: 289–96.
  • Arch R, Wirth K, Hofmann M, Ponta H, Matzku S, Herrlich P. et al. Participation in normal immune responses of a metastasis-inducing splice variant of CD44. Science 1992; 257: 682–5.
  • Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA coding the lymphocyte homing reception CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci 1992; 89: 12160–4.
  • Mackay CR, Terpe HJ, Stauder R, Marston WL, Stark H, Gunthert U. Expression and modulation of CD44 variant isoforms in humans. J Cell Biol 1994; 124: 71–82.
  • Terpe HJ, Stark H, Prehm P. Gunthert U. CD44 variant isoforms are preferentially expressed in basal epithelia of non-malignant human fetal and adult tissues. Histochemistry 1994; 101: 79–89.
  • Sy MS, Guo YJ, Stamenkovic I. Distinct effects of two CD44 isoforms on tumour growth in vivo. J Exp Med 1991; 174: 859–66.
  • Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cells 1991; 65: 13–24.
  • Rudy W, Hofmann R, Schwartz-Albiez R, Zoller M, Heider KH, Ponta H, et al. Two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: Each one individually suffices to confer metastatic behavior. Cancer Res 1993; 53: 1262–8.
  • Seiter S, Arch R, Reber S, Komitowski D, Hofmann M, Ponta H, et al. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med 1993; 177: 443–55.
  • Nomura S, Willis AJ, Edwards DR, Heath JK, Hogan BEM. Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol 1988; 106: 441–50.
  • Brown LF, Berse B, Van De Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ, et al. Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial sur-faces. Mol Cell Biol 1992; 3: 1169–80.
  • Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 1986; 83: 8819–23.
  • Ross FP, Chappell J, Alvarez JI, Sander D, Butler WT, Farach-Carson MC, et al. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha-v-beta-3 potentiate bone resorption. J Biol Chem 1993; 268: 9901–7.
  • Davies BR, Davies MPA, Gibbs FEM, Barraclough R, Rudland PS. Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell-line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene EJ-ras-1. Oncogene 1993; 8: 999–1008.
  • Ke Y, Jing C, Barraclough R, Smith P, Davies MPA, Foster CS. Elevated expression of calcium-binding protein p9Ka is associated with increasing malignant characteristics of rat prostate carcinoma cells. Int J Cancer 1997; 71: 832–7.
  • Desplan C, Heidmann O, Lillie JVV, Auffray C, Thomasset M. Sequence of rat intestinal vitamin D-dependent calcium-binding protein derived from cDNA clone evolutionary implications. J Biol Chem 1983; 258: 3502–5.
  • Kuwano R, Maeda T, Usui H, Araki K, Yamakuni T, Ohshima Y, et al. Molecular-cloning of cDNA of s100-alpha subunit messenger RNA. FEBS Letters 1986; 202: 97–101.
  • Calabretta B, Battini R, Kraczmarek L, Deriel JK, Baserga R. Molecular-cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. J Biol Chem 1986; 261: 2628–32.
  • Gerke V, Weber K. The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein-kinases is related in sequence to the S-100 protein of glial-cells. EMBO Journal 1985; 4: 2917–20.
  • Gibbs FEM, Wilkinson MC, Rudland PS, Barraclough R. Interactions in vitro of p9Ka, the rat S-100 related, metastasis-inducing, calcium-binding protein. J Biol Chem 1994; 269: 18992–9.
  • Goebeler M, Roth J, Van Den Bos C, Ader G, Sorg C. Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. Biochem J 1995; 309: 419–24.
  • Pechere JF. Calcium-binding proteins and calcium function. Elsevier 1977; Amsterdam.
  • Van Eldik LJ, Zendegui JG, Marshak OR, Watterson DM. Calcium-binding proteins and the molecular basis of calcium action. Int Rev Cytol 1982; 77: 1–61.
  • Hilt D, Kligman D. The S-100 protein family: a biochemical and functional overview. In: Heizmann CW, editor. Novel calcium-binding proteins: funda-mentals and clinical implications. Berlin: Springer-Verlag; 1991. p. 65–103.
  • Hayle AJ, Darling DL, Taylor AR, Train D. Transfec-tion of metastatic capability with total genomic DNA from human and mouse metastatic tumor cell-lines. Differentiation 1993; 54: 177–89.
  • Gate CC, Belloni DR, Marin-Padilla M. Acquisition and enhanced expression of the metastatic phenotype following transfections of genomic mouse tumor DNA containing human SCLC gene sequences. Clin Exp Metastasis 1995; 13: 203–17.
  • Chen H, Ke Y, Oates AO, Barraclough R, Rudland PS. Isolation of and the effector for metastasis-inducing DNAs from a human metastatic carcinoma cell line. Oncogene 1997; 14: 1581–8.
  • Ke Y, Beesley C, Smith P, Barraclough R, Rudland P. Foster CS. Generation of metastatic variants by transfection of a nonmetastatic rat epithelial cell-line with genomic DNA from rat prostatic carcinoma cells. Br J Cancer 1997; 77: 287–96.
  • Liang P. Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992; 257: 967–71.
  • Blok LJ, Kumar MV, Tindall DJ. Isolation of cDNAs that are differentially expressed between androgen-dependent and androgen-independent prostate carcinoma cells using differential display PCR. Prostate 1995; 26: 213–24.
  • Berthon P. Cussenot O, Hopwood L, Le Duc A, Maitland NJ. Functional expression of 5V40 in normal human prostatic epithelial and fibroblastic cells: Differentiation pattern of non-tumorigenic cell lines. Int J Oncology 1995; 6: 333–43.
  • Murakami YS, Brothman AR, Leach RJ, White RU. Suppression of malignant phenotype in a human prostate cancer cell-line by fragments of normal chromosomal region 17q. Cancer Res 1995; 55: 3389–94.
  • Ichikawa T, Ichikawa Y, Isaacs JT. Genetic factors and suppression of metastatic ability of prostatic cancer. Cancer Res 1991; 51: 3788–92.
  • Bao L, Loda M, Janmey PA, Stewart R, Anand-Apte B, Zetter BR. Thymosin beta 15: A novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nature Med 1996; 2: 1322–8.
  • Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274: 1371–4.
  • Pongracz J, Johnson GD, Crocker J, Burnett D, Lord JM. The role of protein kinase C in myeloid cell apoptosis. Biochem Soc Trans 1994; 22: 593–7.
  • Lord JM, Pongracz J. Protein Kinase C: a family of isoenzymes with distinct roles in pathogenesis. J Clin Pathol: Mol Pathol 1995; 48: 57–64.
  • Clemens MJ, Trayner I, Meneya J. The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J Cell Sci 1992; 103: 881–7.
  • Freed E. A novel intergrin beta subunit is associated with the vitronectin receptor alpha-subunit (alpha-v) in a human osteosarcoma cell line and is a substrate for protein kinase C. EMBO J 1989; 8: 2955–65.
  • Lord JM, Ashcroft SJH. Identification and charac-terisation of Ca2+-phospholipid-dependent protein kinase in rat islets and hamster beta cells. Biochem J 1984; 219: 547–51.
  • Owen PJ, Johnson GD, Lord JM. Protein kinase C-delta associates with vimentin intermediate filaments in differentiated HL-60 cells. Exp Cell Res 1996; 225: 366–73.
  • Berry N, Nishizuka Y. Protein kinase C and T cell activation. Eur J Biochem 1990; 189: 205–14.
  • Evans JD, Bramhall SR, Neoptolemos JP, Eggo ME. Mechanisms of apoptosis in pancreatic cancer cell lines. Int J Pancreatol 1996.
  • Mohammed RM. Bryostatin 1 induced apoptosis and augments inhibitory effects of vincristine in human diffuse large cell lymphoma. Leuk Res 1995; 19: 667–73.
  • Murray NR, Baumgardner GP, Burns DJ, Fields AP. Protein kinase C isotypes in human erythroleukemia (k562) cell proliferation and differentiation. Evidence that beta II protein kinase C is required for prolifera-tion. J Biol Chem 1993; 268: 15847–53.
  • MacFarlane DE, Manzel L. Activation of Beta-isoenzyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL60 promyelocytes. J Biol Chem 1994; 269: 4327–31.
  • Cacace AM, Guadagno SN, Krauss RS, Fabbro D, Weinstein IB. The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene 1993; 8: 2095–104.
  • Powell CT, Fair WR, Heston WD. Differential expression of protein kinase C isoenzymes messenger RNAs in Dunning R-3327 rat prostatic tumours. Cell Growth Diff 1994; 5: 143–9.
  • Comford PA, Evans JD, Dodson AR, Parsons KF, Woolfenden KA, Neoptolemos JP, et al. Protein Kinase C (PKC) isoenzyme patterns characteristically modu-lated in early prostate cancer. Am J Pathol 1999; 154: 137–44.
  • Sosnowski J, Stetter-Neel C, Cole D, Durham JP, Mawhinney MG. Protein kinase C mediated anti-proliferative glucocorticoid-sphinganine synergism in cultured Pollard III prostate tumour cells. J Urol 1997; 158: 269–74.
  • Rusnak JM, Lazo JS. Downregulation of protein kinase C suppresses induction of apoptosis in human prostatic carcinoma cells. Exp Cell Res 1996; 224: 189–99.
  • Lee YJ, Berns CM, Erdos G, Carry PM. Effectiveness of isoquinolinesulfonamides on heat shock gene expression during heating at 41 degree C in human carcinoma lines. Biochem Biophys Res Commun 1994; 199: 714–9.
  • Herbert JM. Protein kinase C: a key factor in the regulation of tumor cell adhesion to the endothelium. Biochem Pharmacol 1993; 45: 527–37.
  • Blobe GC, Sachs CW, Khan WA, Fabbro D, Stabel S, Westal WC, et al. Selective regulation of expression of protein kinase C (PKC) isoenzyme in multidrug resistant MCF-7 cells-functional significance of enhanced expression of PKC-alpha. J Biol Chem 1993; 268: 658–64.
  • O'Brian CA, Vogel VG, Singletary SE, Ward NE. Elevated protein kinase C expression in human breast tumor biopsies relative to normal breast tissue. Cancer Res 1989; 49: 3215–7.
  • Hirai M, Gamou S, Kobayashi M, Shimizu N. Lung cancer cells often express high levels of protein kinase C activity. Jpn J Cancer Res 1989; 80: 204–8.
  • Pongracz J, Clark P, Neoptolemos JP, Lord JM. Expression of protein kinase C isoenzymes in color-ectal cancer tissue and their differential activation by different bile acids. Int J Cancer 1995; 61: 35–9.
  • Krongrad A, Bai G. c-fos promoter insensitivity to phorbol ester and possible role of protein kinase C in androgen-independent cancer cells. Cancer Res 1994; 54: 203–10.
  • Young CY, Murtha PE, Zhang J. Tumor promoting phorbol ester-induced cell death and gene expression in a human prostate adenocarcinoma cell line. Oncol Res 1994; 6: 203–10.
  • Powell CT, Brittis NJ, Stec D, Hug H, Heston WD, Fair WR. Persistent membrane translocation of protein kinase C alpha during 12-0-tetradecanoylphor-bol-13-acetate-induced apoptosis of LNCaP human prostate cancer cells. Cell Growth Diff 1996; 7: 419–28.
  • Lamm ML, Long DD, Goodwin SM, Lee C. Trans-forming growth factor beta 1 inhibits membrane association of protein kinase C alpha in a human prostate cancer cell line, PC3. Endocrinology 1997; 138: 4657–64.
  • Liu B, Maher RJ, Hanun YA, Porter AT, Honn KV. 12(S)-HETE enhancement of prostate tumor cell invasion: selective role of PKC alpha. Natl Can Inst 1994; 86: 1145–51.
  • Powell CT, Gschwend JE, Fair WR, Brittis NJ, Stec D, Huryk R. Overexpression of protein kinase C-zeta (PKC-zeta) inhibits invasive and metastatic abilities of Dunning R-3327 MAT-LyLu rat prostate cancer cells. Cancer Res 1996; 56: 4137–41.
  • Morimoto RI, Tisseres A, C G Stress proteins in biology and medicine. Cold Spring Harbour: Labora-tory Press, 1990.
  • Milarski KL, Welch WJ, Morimoto RI. Cell cycle-dependent association of hsp70 with specific cellular proteins. J Cell Biol 1989; 108: 413–23.
  • Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science 1993; 259: 1409–10.
  • Ciocca DR, Clark GM, Tandon AK, Fuqua SAN, Welch WJ, McGuire WL. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 1993; 85: 570–4.
  • Tomei LD, Cope FO Apoptosis: The molecular basis of cell death. Cold Spring Harbour: Laboratory Press, 1991.
  • Levine AJ, Momand J, Finlay CA. The p53 tumor suppressor gene. Nature 1991; 351: 453–6.
  • Lindquist S, Craig EA. The heat shock proteins. Annu Rev Genet 1988; 22: 631–77.
  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J. Induction of Chinese hamster H5P27 gene expression in mouse cells confers resistance to heat shock. H5P27 stabilisation of the microfilament organisation. J Biol Chem 1993; 268: 3420–9.
  • Arrigo AP, Suhan JP, Welch WJ. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 1988; 8: 5059–71.
  • Landry J, Chretien P. Laszlo A, Lambert H. Phos-phorylation of H5P27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol 1991; 147: 93–101.
  • Landry J, Lambert H, Zhou M, Lavoie JM, Hickey E, Weber LA, et al. Human H5P27 is phosphorylated as serines 78 and serines 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 1992; 267: 794–803.
  • Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lusch G. Phosphorylation and supramolecu-lar organization of murine small heat shock protein H5P25 abolish its actin polymerization-inhibiting activity. J Biol Chem 1994; 269: 20780–4.
  • Comford PA, Dodson AR, Parsons KF, Fordham M, Desmond AD, Woolfenden A, et al. Heat shock pro-tein (HSP) expression independently predicts clinical outcome in prostate cancer. Cancer Res 1999: Sub-mitted.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.