2,310
Views
40
CrossRef citations to date
0
Altmetric
Soil physics

Soil shear strength prediction using intelligent systems: artificial neural networks and an adaptive neuro-fuzzy inference system

, , , , &
Pages 149-160 | Received 13 Nov 2011, Accepted 22 Jan 2012, Published online: 24 Apr 2012

References

  • Anagu , I , Ingwersena , J , Utermann , J and Streck , T . 2009 . Estimation of heavy metal sorption in German soils using artificial neural networks . Geoderma , 152 : 104 – 112 .
  • Azamathulla , HM , Chang , CK , Ghani , AA , Ariffin , J , Zakaria , NA and Abu Hasan , Z . 2009 . An ANFIS-based approach for predicting the bed load for moderately sized rivers . J. Hydro-environ. Res. , 3 : 35 – 44 .
  • Bouma , J . 1989 . Using soil survey data for quantitative land evaluation . Adv. Soil Sci. , 9 : 177 – 213 .
  • Bradford , JM , Truman , CC and Huang , C . 1992 . Comparison of three measures of resistance of soil surface seals to raindrop splash . Soil Technol. , 5 : 47 – 56 .
  • Brunori , F , Penzo , MC and Torri , D . 1989 . Soil shear strength: its measurement and soil detachability . Catena , 16 : 59 – 71 .
  • Cevik , A and Ozturk , S . 2009 . Neuro-fuzzy model for shear strength of reinforced concrete beams without web reinforcement . Civ. Eng. Environ. Syst. , 26 : 263 – 277 .
  • Ceylan , M , Arslan , MH , Ceylan , R , Kaltakci , MY and Ozbay , Y . 2010 . A new application area of ANN and ANFIS: determination of earthquake load reduction factor of prefabricated industrial buildings . Civ. Eng. Environ. Syst. , 27 : 53 – 69 .
  • Cheng , S , Fang , H , Zhu , T , Zheng , J , Yang , X , Zhang , X and Yu , G . 2010 . Effects of soil erosion and deposition on soil organic carbon dynamics at a sloping field in Black Soil region, Northeast China . Soil Sci. Plant Nutr. , 56 : 521 – 529 .
  • Dawson , CW and Wilby , RL . 2001 . Hydrological modeling using artificial neural networks . Prog. Phys. Geogr. , 25 : 80 – 108 .
  • Dai , X , Huo , Z and Wang , H . 2011 . Simulation for response of crop yield to soil moisture and salinity with artificial neural network . Field Crops Res. , 121 : 441 – 449 .
  • Fan , CC and Su , CF . 2008 . Role of roots in the shear strength of root-reinforced soils with high moisture content . Ecol. Eng. , 33 : 157 – 166 .
  • Filho , CC , Lourenco , A , Guimaraes , MDF and Fonseca , ICB . 2002 . Aggregate stability under different soil management systems in a red Latosol in the state of Parana, Brazil . Soil Till. Res. , 65 : 45 – 51 .
  • Franti , TG , Laflen , JM and Watson , DA . 1999 . Predicting soil detachment from high discharge concentrated flow . Trans. ASAE. , 42 : 329 – 335 .
  • Gee , GW and Bauder , JW . 1986: Particle size analysis. In Methods of Soil Analysis: Part 1: Agronomy Handbook No 9, Ed. Klute A, pp. 383–411. American Society of Agronomy and Soil Science Society of America, Madison, WI
  • Ghadiri , H and Payne , D . 1986 . The risk of leaving the soil surface unprotected against falling rain . Soil Till. Res. , 8 : 119 – 130 .
  • Goktepe , AB , Altun , S , Altintas , G and Tan , O . 2008 . Shear strength estimation of plastic clays with statistical and neural approaches . Build. Environ. , 43 : 849 – 860 .
  • Gray , DH and Sotir , RB . 1996: Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control. John Wiley and Sons, New York
  • Horn , R , Fleige , H Richter , FH . 2005 . SIDASS project, Part 5: Prediction of mechanical strength of arable soils and its effects on physical properties at various map scales . Soil Till. Res. , 82 : 47 – 56 .
  • Huang , Y , Lan , Y , Thomson , SJ , Fang , A , Hoffmann , WC and Lacey , RE . 2010 . Development of soft computing and applications in agricultural and biological engineering . Comput. Electron. Agric. , 71 : 107 – 127 .
  • Iranian Geological Organization 2006: Geological Survey of Iran. Shahrekord, Iran
  • Jang , JSR and Sun , CT . 1995 . Neuro-fuzzy modeling and control . Proc. IEEE. , 83 : 378 – 406 .
  • Juang , CH , Chen , CJ and Tien , YM . 1999 . Appraising CPT-based liquefaction resistance evaluation methods-artificial neural network approach . Can. J. Geotech. , 36 : 443 – 454 .
  • Kalkan , E , Akbulut , S , Tortum , A and Celik , S . 2009 . Prediction of the unconfined compressive strength of compacted granular soils by using inference systems . Environ Geol. , 58 : 1429 – 1440 .
  • Kaul , M , Hill , R and Walthall , C . 2005 . Artificial neural networks for corn and soybean yield prediction . Agric. Sys. , 85 : 1 – 18 .
  • Khalilmoghadam , B , Afyuni , M , Abbaspour , KC , Jalalian , A , Dehghani , AA and Schulin , R . 2009 . Estimation of surface shear strength in Zagros region of Iran - A comparison of artificial neural networks and multiple-linear regression models . Geoderma , 153 : 29 – 36 .
  • Kisi , O , Haktanir , T , Ardiclioglu , M , Ozturk , O , Yalcin , E and Uludag , S . 2009 . Adaptive neuro-fuzzy computing technique for suspended sediment estimation . Adv. Eng. Softw. , 40 : 438 – 444 .
  • Krishnamurthy , M . 1983: Incipient motion of cohesive soils. In Proceedings of the Conference on Frontiers in Hydraulic Engineering, Ed. Shen HT, pp. 96–101. American Society of Civil Engineers, New York
  • Lagacherie , P and McBratney , AB . 2006 . Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping . Dev. Soil Sci. , 31 : 3 – 22 .
  • Leonard , J and Richard , G . 2004 . Estimation of runoff critical shear stress for soil erosion from soil shear strength . Catena , 57 : 233 – 249 .
  • Lillesand , TM and Keifer , W . 1994: Remote Sensing and Image Interpretation. John Wiley & Sons, New York
  • Mashrei , MA , Abdulrazzaq , N , Abdalla , TY and Rahman , MS . 2010 . Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members . Eng. Struct. , 32 : 1723 – 1734 .
  • Merz , W and Bryan , R . 1993 . Critical conditions for rill initiation on sandy loam brunisols: laboratory and field experiments in southern Ontario, Canada . Geoderma , 57 : 357 – 385 .
  • Minasny , B , Hopmans , JW , Harter , T , Eching , SO , Tuli , A and Denton , MA . 2004 . Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data . Soil Sci. Soc. Am. J. , 68 : 417 – 429 .
  • Mishra , U , Lal , R , Liu , D and VanMeirvenne , M . 2010 . Predicting the spatial variation of the soil organic carbon pool at a regional scale . Soil Sci. Soc. Am. J. , 74 : 906 – 914 .
  • Moore , ID . 1981 . Effect of surface sealing on infiltration . Trans. ASAE. , 24 : 1546 – 1552 .
  • Mosaddeghi , MR , Hajabbasi , MA and Khademi , H . 2006 . Tensile strength of sand, palygorskite, and calcium carbonate mixtures and interpretation with the effective stress theory . Geoderma , 134 : 160 – 170 .
  • Nelson , RE . 1982: Carbonate and gypsum. In Methods of Soil Analysis: Part I: Agronomy Handbook No 9, Ed. Page AL, pp. 181–197. American Society of Agronomy and Soil Science Society of America, Madison, WI
  • Nelson , DW and Sommers , LP . 1986: Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 2: Agronomy Handbook No 9, Ed. Page AL, pp. 539–579. American Society of Agronomy and Soil Science Society of America, Madison, WI
  • Rauws , G and Govers , G . 1988 . Hydraulic and soil mechanical aspects of rill generation on agricultural soils . Eur. J. Soil Sci. , 39 : 111 – 124 .
  • Renard , KG , Foster , GR , Weesies , GA , McCool , DK and Yoder , DC . 1997: Predicting Soil Erosion by Water: a Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook, Vol. 703, 404 pp. U.S. Department of Agriculture, Washington, DC
  • Rose , CW , Hairsine , PB , Proffitt , APB and Misra , RK . 1990 . Interpreting the role of soil strength in soil erosion process . Catena , 17 : 153 – 165 .
  • Schaap , MG and Leij , FJ . 1998 . Using neural networks to predict soil water retention and soil hydraulic conductivity . Soil Till. Res. , 47 : 37 – 42 .
  • Silva , RB , Iori , P , Armesto , C and Bendini , HN . 2010 . Assessing rainfall erosivity with artificial neural networks for the Ribeira Valley, Brazil . Int. J. Agron. , : 1 – 7 .
  • Sobhani , J , Najimi , M , Pourkhorshidi , AR and Parhizkar , T . 2010 . Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models . Cons. Build. Mat. , 24 : 709 – 718 .
  • Soil Survey Staff 2006: Keys to Soil Taxonomy. U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, DC
  • Takagi , T and Sugeno , M . 1985 . Fuzzy identification of systems and its applications to modeling and control . IEEE Trans Syst. Man. Cybernet. , 15 : 116 – 132 .
  • Tay , JH and Zhang , X . 1999 . Neural fuzzy modeling of anaerobic biological waste water treatment systems . ASCE: J. Environ. Eng. , 125 : 1149 – 1159 .
  • Tayfur , G . 2002 . Artificial neural networks for sheet sediment transport . Hydrol. Sci. J. , 47 : 879 – 892 .
  • Uno , Y , Prasher , SO , Lacroix , R , Goel , PK , Karimi , Y , Viau , A and Patel , RM . 2005 . Artificial neural networks to predict corn yield from compact airborne spectrographic imager data . Comput. Electron. Agric. , 47 : 149 – 161 .
  • Yilmaz , I and Yuksek , G . 2009 . Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models . Int. J. Rock Mech. Min. Sci. , 46 : 803 – 810 .
  • Zehetner , F , Vemuri , NL , Huh , CA , Kao , SJ , Hsu , SC , Huang , JC and Chen , ZS . 2008 . Soil and phosphorus redistribution along a steep tea plantation in the Feitsui reservoir catchment of northern Taiwan . Soil Sci. Plant Nutr. , 54 : 618 – 626 .
  • Zhang , B , Zhao , QG , Horn , R and Baumgart , T . 2001 . Shear strength of surface soil as affected by soil bulk density and soil water content . Soil Till. Res. , 59 : 97 – 106 .
  • Zhang , J . 1999 . Soil erosion in Guizhou province of China: a case study in Bijie Prefecture . Soil Use Manage. , 15 : 68 – 70 .
  • Zimbone , SM , Vickers , A , Morgan , RPC and Vella , P . 1996 . Field investigation of different techniques for measuring surface soil shear strength . Soil Technol. , 9 : 101 – 111 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.