4,555
Views
13
CrossRef citations to date
0
Altmetric
Soil and plant aspects in the Integrated Land Ecosystem–Atmosphere Processes Study (iLEAPS) special section

Current status and future of land surface models

, , , &
Pages 34-47 | Received 13 Dec 2013, Accepted 21 Apr 2014, Published online: 18 Jun 2014

REFERENCES

  • Adams J 2010: Plants on the move. Vegetation-Climate Interaction - How Plants Make the Global Environment -, pp. 67–96. Springer, Published in association with Praxis Publishing Ltd, Chichester, UK.
  • Adams B, White A, Lenton TM 2004: An analysis of some diverse approaches to modelling terrestrial net primary productivity. Ecol. Model., 177, 353–391. doi:10.1016/j.ecolmodel.2004.03.014
  • Arneth A, Miller PA, Scholze M, Hickler T, Schurgers G, Smith B, Prentice IC 2007: CO2 inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry. Geophys. Res. Lett., 34, L18813. doi:10.1029/2007GL030615
  • Arneth A, Schurgers G, Lathiere J, Duhl T, Beerling DJ, Hewitt CN, Martin M, Guenther A 2011: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmos. Chem. Phys., 11, 8037–8052. doi:10.5194/acp-11-8037-2011
  • Blagodatsky S, Smith P 2012: Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol. Biochem., 47, 78–92. doi:10.1016/j.soilbio.2011.12.015
  • Bodirsky BL, Popp A, Weindl I, Dietrich JP, Rolinski S, Scheiffele L, Schmitz C, Lotze-Campen H 2012: N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios. Biogeosciences, 9, 4169–4197. doi:10.5194/bg-9-4169-2012
  • Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW 2003: A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Global Change Biol., 9, 1543–1566. doi:10.1046/j.1365-2486.2003.00681.x
  • Bond-Lamberty B, Thomson A 2010: Temperature-associated increases in the global soil respiration record. Nature, 464, 579–582. doi:10.1038/nature08930
  • Bouwman AF, Van Drecht G, Van der Hoek KW 2005: Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere, 15, 137–155.
  • Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre MF, Matthews HD, Ramankutty N, Schaeffer M, Sokolov A 2006: Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim. Dyn., 26, 587–600. doi:10.1007/s00382-005-0092-6
  • Bruinsma J 2009: The resource outlook to 2050: by how much do land, water, and crop yields need to increase by 2050? FAO Expert Meeting on ‘How to feed the world in 2050’. 24–26. June 2009, Rome: FAO.
  • Bugmann H 2001: A review of forest gap models. Clim. Change, 51, 259–305. doi:10.1023/A:1012525626267
  • Camill P, Clark JS 2000: Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the Grassland/Woodland boundary. Ecosystems, 3, 534–544. doi:10.1007/s100210000047
  • Claussen M, Brovkin V, Ganopolski A 2001: Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett., 28, 1011–1014. doi:10.1029/2000GL012471
  • Cox PM 2001: Description of the “TRIFFID” Dynamic Global Vegetation Model. Centre Technical Note, 24, Hadley Centre, Met Office, UK.
  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187. doi:10.1038/35041539
  • Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341–344. doi:10.1038/nature11882
  • Dalal RC, Allen DE 2008: TURNER REVIEW No. 18. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot., 56, 369–407. doi:10.1071/BT07128
  • Davidson EA, Janssens IA 2006: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173. doi:10.1038/nature04514
  • Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P 2003: Green surprise? How terrestrial ecosystems could affect earth’s climate. Front. Ecol. Environ., 1, 38–44.
  • Friend AD, Stevens AK, Knox RG, Cannell MGR 1997: A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol. Model., 95, 249–287. doi:10.1016/S0304-3800(96)00034-8
  • Fuentes JD, Hayden BP, Garstang M, Lerdau M, Fitzjarrald D, Baldocchi DD, Monson R, Lamb B, Geron C 2001: New directions: VOCs and biosphere-atmosphere feedbacks. Atmos. Environ., 35, 189–191. doi:10.1016/S1352-2310(00)00365-4
  • Ganzeveld L, Bouwman L, Stehfest E, van Vuuren DP, Eickhout B, Lelieveld J 2010: Impact of future land use and land cover changes on atmospheric chemistry‐climate interactions. J. Geophys. Res., 115, D23301. doi:10.1029/2010JD014041
  • Gilbert B, Wright SJ, Muller-Landau HC, Kitajima K, Hernandéz A 2006: Life history trade-offs in tropical trees and lianas. Ecology, 87, 1281–1288. doi:10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2
  • Global Soil Data Task Group. 2000. Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS). [Global Gridded Surfaces of Selected Soil Characteristics (International Geosphere-Biosphere Programme - Data and Information System)]. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/569.
  • Guenther A, Baugh B, Brasseur G, Greenberg J, Harley P, Klinger L, Serça D, Vierling L 1999: Isoprene emission estimates and uncertainties for the central African EXPRESSO study domain. J. Geophys. Res., 104, 30625–30639. doi:10.1029/1999JD900391
  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA et al. 1995: A global model of natural volatile organic compound emissions. J. Geophys. Res., 100, 8873–8892. doi:10.1029/94JD02950
  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181–3210. doi:10.5194/acp-6-3181-2006
  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X 2012: The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev., 5, 1471–1492. doi:10.5194/gmd-5-1471-2012
  • Hashimoto S 2012: A new estimate of global soil greenhouse gas fluxes using a simple data-oriented model. Plos One, 7, e41962. doi:10.1371/journal.pone.0041962
  • Heald CL, Henze DK, Horowitz LW, Feddema J, Lamarque JF, Guenther A, Hess PG, Vitt F, Seinfeld JH, Goldstein AH et al. 2008: Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res., 113, D05211. doi:10.1029/2007JD009092
  • Heald CL, Wilkinson MJ, Monson RK, Alo CA, Wang GL, Guenther A 2009: Response of isoprene emission to ambient CO2 changes and implications for global budgets. Global Change Biol., 15, 1127–1140. doi:10.1111/j.1365-2486.2008.01802.x
  • Holdridge LR 1947: Determination of world plant formations from simple climatic data. Science, 105, 367–368. doi:10.1126/science.105.2727.367
  • Horiguchi K, Miller RD 1980: Experimental studies with frozen soil in an ice sandwich permeameter. Cold Reg. Sci. Technol., 3, 177–183. doi:10.1016/0165-232X(80)90023-3
  • Houghton RA, Hackler JL, Lawrence KT 1999: The U.S. carbon budget: contributions from land-use change. Science, 285, 574–578. doi:10.1126/science.285.5427.574
  • Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A et al. 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change, 109, 117–161. doi:10.1007/s10584-011-0153-2
  • Inatomi M, Ito A, Ishijima K, Murayama S 2010: Greenhouse gas budget of a cool-temperate deciduous broad-leaved forest in Japan estimated using a process-based model. Ecosystems, 13, 472–483. doi:10.1007/s10021-010-9332-7
  • IPCC 2013: Climate change 2013: the physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Eds. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, 1535 pp. Cambridge University Press, Cambridge (UK) and New York, NY, (USA).
  • Ise T, Dunn AL, Wofsy SC, Moorcroft PR 2008: High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geosci., 1, 763–766. doi:10.1038/ngeo331
  • Ise T, Moorcroft PR 2006: The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry, 80, 217–231. doi:10.1007/s10533-006-9019-5
  • Ito A, Sillman S, Penner JE 2009: Global chemical transport model study of ozone response to changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing temperatures: sensitivities to isoprene nitrate chemistry and grid resolution. J. Geophys. Res., 114, D09301.
  • Jain AK, Meiyappan P, Song Y, House JI 2013: CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Global Change Biol., 19, 2893–2906. doi:10.1111/gcb.12207
  • Jain AK, Yang X 2005: Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change. Global Biogeochem. Cycles, 19, GB2015. doi:10.1029/2004GB002349
  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ 2013: Terrestrial water fluxes dominated by transpiration. Nature, 496, 347–350. doi:10.1038/nature11983.
  • Jones CG, Lawton JH, Shachak M 1997: Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78, 1946–1957. doi:10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
  • Klein Goldewijk K, Beusen A, Janssen P 2010: Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene, 20, 565–573. doi:10.1177/0959683609356587
  • Klein Goldewijk K, Beusen A, van Drecht G, de Vos M 2011: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecol. Biogeogr., 20, 73–86. doi:10.1111/j.1466-8238.2010.00587.x
  • Kohyama T, Shigesada N 1995: A size-distribution-based model of forest dynamics along a latitudinal environmental gradient. Vegetatio, 121, 117–126. doi:10.1007/BF00044677
  • Kondo J 2000: Atmospheric Science near the Ground Surface, University of Tokyo Press, Tokyo, pp. 195, (in Japanese).
  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN 2009: Biogenic volatile organic compounds in the Earth system. New Phytol., 184, 276–276.
  • Lathière J, Hauglustaine DA, De Noblet-Ducoudré N, Krinner G, Folberth GA 2005: Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys. Res. Lett., 32, L20818. doi:10.1029/2005GL024164
  • Lathière J, Hewitt CN, Beerling DJ 2010: Sensitivity of isoprene emissions from the terrestrial biosphere to 20th century changes in atmospheric CO2 concentration, climate, and land use. Glob. Biogeochem. Cycles, 24, GB1004. doi:10.1029/2009GB003548
  • Lavorel S, Díaz S, Cornelissen H, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy N, Urcelay C 2007: Plant functional types: are we getting any closer to the Holy Grail? In Terrestrial Ecosystems in a Changing World, Eds. Canadell JG, Pataki DE,Pitelda LF, pp. 171–186. Springe-Verlag, Heidelberg.
  • Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf GR, Ahlström A et al. 2013: The global carbon budget 1959–2011. Earth Sys. Sci. Data, 5, 165–185. doi:10.5194/essd-5-165-2013
  • Liao H, Chen WT, Seinfeld JH 2006: Role of climate change in global predictions of future tropospheric ozone, and aerosols. J. Geophys. Res., 111, D12304. doi:10.1029/2005JD006852
  • Liu S, Wei Y, Post WM, Cook RB, Schaefer K, Thornton MM 2013: The Unified North American Soil Map and its implication on the soil organic carbon stock in North America. Biogeosciences, 10, 2915–2930. doi:10.5194/bg-10-2915-2013
  • Lobell DB, Bala G, Duffy PB 2006: Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett., 33, L06708. doi:10.1029/2005GL025492
  • Luo Y, Ogle K, Tucker C, Fei SF, Gao C, LaDeau S, Clark JS, Schimel DS 2011: Ecological forecasting and data assimilation in a data-rich era. Ecol. Appl., 21, 1429–1442. doi:10.1890/09-1275.1
  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW et al. 2001: Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 15, 183–206. doi:10.1029/2000GB001298
  • Meiyappan P, Jain AK 2012: Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front. Earth Sci., 6, 122–139. doi:10.1007/s11707-012-0314-2
  • Moorcroft PR, Hurtt GC, Pacala SW 2001: A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol. Monogr., 71, 557–586. doi:10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2.
  • Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M 2010: The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences, 7, 2203–2223. doi:10.5194/bg-7-2203-2010
  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M 2010: The leaf level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences, 7, 1809–1832. doi:10.5194/bg-7-1809-2010
  • Pacifico F, Folberth GA, Jones CD, Harrison SP, Collins WJ 2012: Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry. J. Geophys. Res., 117, D22302.
  • Peñuelas J, Llusià J 2003: BVOCs: plant defense against climate warming? TRENDS Plant Sci., 8, 105–109. doi:10.1016/S1360-1385(03)00008-6
  • Pitman AJ 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23, 479–510. doi:10.1002/joc.893
  • Pitman AJ, de Noblet-Ducoudré N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V et al. 2009: Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814. doi:10.1029/2009GL039076
  • Pongratz J, Reick CH, Raddatz T, Claussen M 2010: Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett., 37, L08702. doi:10.1029/2010GL043010
  • Potter CS 1997: An ecosystem simulation model for methane production and emission from wetlands. Global Biogeochem. Cycles, 11, 495–506. doi:10.1029/97GB02302
  • Potter CS, Klooster SA 1998: Interannual variability in soil trace gas (CO2, N2O, NO) fluxes and analysis of controllers on regional to global scales. Global Biogeochem. Cycles, 12, 621–635. doi:10.1029/98GB02425
  • Purves D, Pacala S 2008: Predictive models of forest dynamics. Science, 320, 1452–1453. doi:10.1126/science.1155359
  • Reich PB, Walters MB, Ellsworth DS 1997: From tropics to tundra, Global convergence in plant functioning. Proc. Natl. Acad. Sci. U.S.A, 94, 13730–13734. doi:10.1073/pnas.94.25.13730
  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK 2003: Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature, 421, 256–259. doi:10.1038/nature01312
  • Sakurai G, Jomura M, Yonemura S, Iizumi T, Shirato Y, Yokozawa M 2012: Inversely estimating temperature sensitivity of soil carbon decomposition by assimilating a turnover model and long-term field data. Soil Biol. Biochem., 46, 191–199. doi:10.1016/j.soilbio.2011.11.005
  • Sanderson MG, Jones CD, Collins WJ, Johnson CE, Derwent RG 2003: Effect of climate change on isoprene emissions and surface ozone levels. Geophys. Res. Lett., 30, 1936. doi:10.1029/2003GL017642
  • Sato H 2008: Current status and future direction of biogeochemical models, a review. Jpn. J. Ecol., 58, 11–21. (in Japanese).
  • Sato H 2014: Dynamic global vegetation models, and interactions between vegetation and atmosphere. In Ecology of global environmental change, Eds. Hara T, Kyoritsu Shuppan Press, Tokyo. (in Japanese).
  • Sato H, Itoh A, Kohyama T 2007: SEIB-DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol. Model., 200, 279–307. doi:10.1016/j.ecolmodel.2006.09.006
  • Scheiter S, Higgins SI 2009: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Global Change Biol., 15, 2224–2246. doi:10.1111/j.1365-2486.2008.01838.x
  • Shevliakova E, Pacala SW, Malyshev S, Hurtt GC, Milly PCD, Caspersen JP, Sentman LT, Fisk JP, Wirth C, Crevoisier C 2009: Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Global Biogeochem. Cycles, 23, GB2022. doi:10.1029/2007GB003176
  • Shugart HH, Crow TR, Hett JM 1973: Forest succession models - rationale and methodology for modeling forest succession over large regions. For. Sci., 19, 203–212.
  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P et al. 2008: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol., 14, 2015–2039. doi:10.1111/j.1365-2486.2008.01626.x
  • Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Ri Xu, Prentice IC 2013: Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Change, 3, 666–672. doi:10.1038/nclimate1864
  • Tai APK, Mickley LJ, Heald CL, Wu S 2013: Effect of CO2 inhibition on biogenic isoprene emission: implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use. Geophys. Res. Lett., 40, 3479–3483. doi:10.1002/grl.50650
  • Tian H, Xu X, Lu C, Liu ML, Ren W, Chen GS, Melillo J, Liu JY 2011: Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res., 116, G02011. doi:10.1029/2010JG001393
  • Turner DP, Baglio JV, Wones AG, Pross D, Vong R, Mcveety BD, Phillips DL 1991: Climate change and Isoprene emissions from vegetation. Chemosphere, 23, 37–56. doi:10.1016/0045-6535(91)90115-T
  • Wagai R, Kishimoto-Mo A, Yonemura S, Shirato Y, Hiradate S, Yagasaki Y 2013: Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Global Change Biol., 19, 1114–1125. doi:10.1111/gcb.12112
  • Wiedinmyer C, Tie X, Guenther A, Neilson R, Granier, C 2006: Future changes in biogenic isoprene emissions: how might they affect regional and global atmospheric chemistry? Earth Interact., 10, 1–19. doi:10.1175/EI174.1
  • Wilkinson M, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R 2009: Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob. Change Biol., 15, 1189–1200. doi:10.1111/j.1365-2486.2008.01803.x
  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004: The worldwide leaf economics spectrum. Nature, 428, 821–827. doi:10.1038/nature02403
  • Wu S, Mickley LJ, Jacob DJ, Rind D, Streets DG 2008: Effects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States. J. Geophys. Res., 113, D18312. doi:10.1029/2007JD009639
  • Wu S, Mickley LJ, Kaplan JO, Jacob DJ 2012: Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos. Chem. Phys., 12, 1597–1609. doi:10.5194/acp-12-1597-2012
  • Young PJ, Arneth A, Schurgers G, Zeng G, Pyle JA 2009: The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmos. Chem. Phys., 9, 2793–2803. doi:10.5194/acp-9-2793-2009