3,125
Views
20
CrossRef citations to date
0
Altmetric
Environment

Azolla cover significantly decreased CH4 but not N2O emissions from flooding rice paddy to atmosphere

, , , , , , & show all
Pages 68-76 | Received 31 Mar 2017, Accepted 30 Oct 2017, Published online: 10 Nov 2017

References

  • Akiyama H, Takada-Hoshino Y, Itakura M, Shimomura Y, Wang Y, Yamamoto A, Tago K, Nakajima Y, Minamisawa K, Hayatsu M 2016: Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens. Sci. Rep., 6, Article number: 32869, doi:10.1038/srep32869.
  • Akiyama H, Yan X, Yagi K 2006: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci. Plant Nutr., 52, 774–787. doi:10.1111/j.1747-0765.2006.00097.x.
  • Ali MA, Kim PJ, Inubushi K 2015: Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: a comparative study between temperate and subtropical rice paddy soils. Sci. Total Environ., 529, 140–148. doi:10.1016/j.scitotenv.2015.04.090.
  • Arai S, Ishizuka S, Ohta S, Ansori S, Tokuchi N, Tanaka N, Hardjono A 2008: Potential N2O emissions from leguminous tree plantation soils in the humid tropics. Global Biogeochem. Cycl., 22, GB2028. doi:10.1029/2007GB002965.
  • Bharati K, Mohanty SR, Singh DP, Rao VR, Adhya TK 2000: Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India. Agric. Ecosyst. Environ., 79, 73–83. doi:10.1016/S0167-8809(99)00148-6.
  • Bocchi S, Malgioglio A 2010: Azolla-Anabaena as a biofertilizer for rice paddy fields in the Po Valley, a temperate rice area in northern Italy. Int. J. Agron., 2010, Article ID 152158, doi:10.1155/2010/152158.
  • Brouwer P, Van Der Werf A, Schluepmann H, Reichart G-J, Nierop KGJ 2016: Lipid yield and composition of Azolla filiculoides and the implications for biodiesel production. BioEnergy Res., 9, 369–377. doi:10.1007/s12155-015-9665-3.
  • Chen GX, Huang GH, Huang B, Yu KW, Wu J, Xu H 1997: Nitrous oxide and methane emissions from soil-plant systems. Nutr. Cycl. Agroecosyst., 49, 41–45. doi:10.1023/A:1009758900629.
  • Cheng W, Okamoto Y, Takei M, Tawaraya K, Yasuda H 2015a: Combined use of Azolla and loach suppressed weed Monochoria vaginalis and increased rice yield without agrochemicals. Org. Agric., 5, 1–10. doi:10.1007/s13165-015-0097-3.
  • Cheng W, Sakai H, Hartley AE, Yagi K, Hasegawa T 2008: Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Glob. Change Biol., 14, 644–656. doi:10.1111/j.1365-2486.2007.01532.x.
  • Cheng W, Sakai H, Matsushima M, Yagi K, Hasegawa T 2010: Response of Azolla filiculoides, a floating aquatic fern, to elevated CO2, temperature, and phosphorus levels. Hydrobiologia., 656, 5–14. doi:10.1007/s10750-010-0441-2.
  • Cheng W, Takei M, Sato C, Kautsar K, Sasaki Y, Sato S, Tawaraya K, Yasuda H 2015b: Combined use of Azolla and loach suppressed paddy weeds and increased organic rice yield: second season results. J. Wetlands Environ. Manag., 3, 1–13.
  • Cheng W, Tsuruta H, Chen GX, Akiyama H, Yagi K 2004a: N2O and N2 production potential in various Chinese agricultural soils by denitrification. Soil Sci. Plant Nutr., 50, 909–915. doi:10.1080/00380768.2004.10408553.
  • Cheng W, Tsuruta H, Chen GX, Yagi K 2004b: N2O and NO production in various Chinese agricultural soils by nitrification. Soil Biol. Biochem., 36, 953–963. doi:10.1016/j.soilbio.2004.02.012.
  • Cheng W, Yagi K, Sakai H, Kobayashi K 2006: Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry., 77, 351–373. doi:10.1007/s10533-005-1534-2.
  • Cheng W, Yagi K, Xu H, Sakai H, Kobayashi K 2005: Influence of elevated concentrations of atmospheric CO2 on CH4 and CO2 entrapped in rice-paddy soil. Chem. Geol., 218, 15–24. doi:10.1016/j.chemgeo.2005.01.016.
  • Cissé M, Vlek PLG 2003: Influence of urea on biological N2 fixation and N transfer from Azolla intercropped with rice. Plant Soil., 250, 105–112. doi:10.1023/A:1022830423154.
  • Inubushi K, Cheng W, Aonuma S, Hoque MM, Kobayashi K, Miura S, Kim HY, Okada M 2003: Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob. Change Biol., 9, 1458–1464. doi:10.1046/j.1365-2486.2003.00665.x.
  • IPCC 2007: Climate change 2007 mitigation of climate change, contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. In Intergovernmental Panel on Climate Change, Ed, Metz B, Davidson O, Bosch P, Dave R, pp. 851. Cambridge University Press, Cambridge.
  • Itoh M, Sudo S, Mori S et al. 2011: Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agr. Ecosyst. Environ., 141, 359–372. doi:10.1016/j.agee.2011.03.019.
  • Jumadi O, Hiola SF, Hala Y, Norton J, Inubushi K 2014: Influence of Azolla (Azolla microphylla Kaulf.) compost on biogenic gas production, inorganic nitrogen and growth of upland kangkong (Ipomoea aquatica Forsk.) in a silt loam soil. Soil Sci. Plant Nutri., 60, 722–730. doi:10.1080/00380768.2014.942879.
  • Kimani SM, Kanno T, Tawaraya K, Cheng W 2016: Influence of phosphorous and flooding water depth on Azolla growth and its significance in mitigating evapotranspiration. Atstract of the Annual Meetings, Jan. Soc. Soil Sci. Plant Nutri., 62, 173–173.
  • Kollah B, Patra AK, Mohanty SR 2016: Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ. Sci. Pollut. Res., 23, 4358–4369. doi:10.1007/s11356-015-5857-9.
  • Li C 2007: Quantifying greenhouse gas emissions from soils: scientific basis and modeling approach. Soil Sci. Plant Nutr., 53, 344–352. doi:10.1111/j.1747-0765.2007.00133.x.
  • Liu J, Xu H, Jiang Y, Zhang K, Hu Y, Zeng Z 2017: Methane emissions and microbial communities as influenced by dual cropping of azolla along with early rice. Sci. Rep., 7, 40635. doi:10.1038/srep40635.
  • Lou Y, Inubushi K, Mizuno T, Hasegawa T, Lin Y, Sakai H, Cheng W, Kobayashi K 2008: CH4 emission with differences in atmospheric CO2 enrichment and rice cultivars in a Japanese paddy soil. Glob. Change Biol., 14, 2678–2687.
  • Ma Y, Tong C, Wang W, Zeng C 2012: Effect of Azolla on CH4 and N2O emissions in Fuzhou Plain paddy fields. Chinese Journal of Eco-Agriculture., 20, 723−727 Chinese with English summary. doi:10.3724/SP.J.1011.2012.00723.
  • Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N 2016: Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ., 572, 874–896. doi:10.1016/j.scitotenv.2016.07.182.
  • Mandal B, Vlek PLG, Mandal LN 1999: Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biol. Fert. Soils., 28, 329–342. doi:10.1007/s003740050501.
  • Minamikawa K, Tokida T, Sudo S, Padre A, Yagi K 2015: Guidelines for Measuring CH4 and N2O Emissions from Rice Paddies by a Manually Operated Closed Chamber Method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan.
  • Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A 2010: Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Sci. Plant Nutr., 56, 782–788. doi:10.1111/j.1747-0765.2010.00501.x.
  • Mujiyo SBH, Hanudin E, Widada J, Syamsiyah J 2016: Methane emission on organic rice experiment using Azolla. Int. J. App. Env. Sci., 11, 295–308.
  • Nakajima M, Cheng W, Tang S, Hori Y, Yaginuma E, Hattori S, Hanayama S, Tawaraya K, Xu X 2016: Modeling aerobic decomposition of rice straw during off-rice season in an Andisol paddy soil in a cold temperate region, Japan: effects of soil temperature and moisture. Soil Sci. Plant Nutr., 62, 90–98. doi:10.1080/00380768.2015.1121116.
  • Nishimura S, Akiyama H, Sudo S, Fumoto T, Cheng W, Yagi K 2011: Combined emission of CH4 and N2O from a paddy field was reduced by preceding upland crop cultivation. Soil Sci. Plant Nutr., 57, 167–178. doi:10.1080/00380768.2010.551346.
  • Nouchi I, Mariko S, Aoki K 1990: Mechanism of methane transportation from the rhizosphere to the atmosphere through rice plants. Plant Physiol., 94, 59−66. doi:10.1104/pp.94.1.59.
  • Singh JS, Strong PJ 2016: Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol. Environ. Saf., 124, 267–276. doi:10.1016/j.ecoenv.2015.10.018.
  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE 2009: Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ., 133, 247–266. doi:10.1016/j.agee.2009.04.021.
  • Sudo S 2006: Method and instrument for measuring atmospheric gas. Industrial Property Digital Library, Patent of Japan (no. 2006–275844).
  • Uchida Y, Akiyama H 2013: Mitigation of postharvest nitrous oxide emissions from soybean ecosystems: a review. Soil Sci. Plant Nutr., 59, 477–487. doi:10.1080/00380768.2013.805433.
  • Van Der Steen NP, Nakiboneka P, Mangalika L, Ferrer AVM, Gijzen HJ 2003: Effect of duckweed cover on greenhouse gas emissions and odour release from waste stabilisation ponds. Water Sci.Technol., 48, 341–348.
  • Wagner GM 1997: Azolla: a review of its biology and utilization. Bot. Rev., 63, 1–26. doi:10.1007/BF02857915.
  • Wang C, Li S, Lai DYF, Wang W, Ma Y 2015: The effect of floating vegetation on CH4 and N2O emissions from subtropical paddy fields in China. Paddy Water Environ., 13, 425–431. doi:10.1007/s10333-014-0459-6.
  • Wang ZP, DeLaune RD, Patrick WH Jr., Masscheleyn P 1993: Soil redox and pH effects on methane production in flooded rice soil. Soil Sci. Soc. Am. J., 57, 382–385. doi:10.2136/sssaj1993.03615995005700020016x.
  • Watanabe I, Liu CC 1992: Improving nitrogen-fixing systems and integrating them into sustainable rice farming. Plant Soil., 141, 57–67. doi:10.1007/BF00011310.
  • Xu GC, Liu LX, Wang QS, Yu XC, Hang YH 2017: Integrated rice-duck farming mitigates the global warming potential in rice season. Sci. Total Environ., 575, 58–66.
  • Ying Z, Boeckx P, Chen GX, Cleemput OV 2000: Influence of Azolla on CH4 emission from rice fields. Nutr. Cycl. Agroecosyst., 58, 321–326. doi:10.1023/A:1009871308968.
  • Zhang W, Zhu X, Luo Y, Rafique R, Chen H, Huang J, Mo J 2014: Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. non-N-fixing tree species. Biogeosciences., 11, 4941–4951. doi:10.5194/bg-11-4941-2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.