3,366
Views
53
CrossRef citations to date
0
Altmetric
Environment

Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: a synthesis

, , , &
Pages 2-13 | Received 30 Jun 2017, Accepted 21 Nov 2017, Published online: 01 Dec 2017

References

  • Adhya TK, Rath AK, Gupta PK, Rao VK, Das SK, Parida KM, Parashar DC, Sethunathan N 1994: Methane emission from flooded rice fields under irrigated conditions. Biol. Fertil. Soils, 18, 245–248. doi:10.1007/BF00647675
  • Ahern CR, Stone Y, Blunden B 1998: Acid sulfate soils assessment guidelines. In Acid Sulfate Soil Management Advisory Committee, Ed. Acid Sulfate Soil Management Advisory Committee, pp. 56–58. Wollongbar, NSW.
  • Ahmad S, Chengfang L, Guangzhao D, Zhan M, Wang J 2009: Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Tillage Res., 106, 54–61. doi:10.1016/j.still.2009.09.005
  • Akiyama H, Yagi K, Yan X 2005: Direct N2O emission from rice paddy fields: summary of available data. Glob. Biogeochem. Cycles, 19(1), GB1005. doi:10.1029/2004GB002378
  • Ali MA, Lee CH, Kim SY, Kim PJ 2009: Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation. Waste Manag., 29, 2759–2764. doi:10.1016/j.wasman.2009.05.018
  • Asami T, Kumada K 1959: A new method for determining free iron in paddy soils. Soil Plant Food, 5, 141–146. doi:10.1080/00380768.1959.10430907
  • Bouman BAM, Lampayan RM, Tuong TP 2007: Water Management in Irrigated Rice: Coping with Water Scarcity, 54 p. International Rice Research Institute, Los Baños, Philippine.
  • Bouwman AF, Boumans LJM, Batjes NH 2002: Modeling global annual N2O emissions from fertilized fields. Global Biogeochem. Cycles, 16(4), 1080. doi:10.1029/2001GB001812
  • Box GEP, Cox DR 1964: An analysis of transformations. J. Roy. Stat. Soc. B, 26, 211–252.
  • Brentrup F, Küsters J, Lammel J, Kuhlmann H 2000: Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. LCA, 5, 349–357. doi:10.1007/BF02978670
  • Chidthaisong A, Cha-Un N, Rossopa B, Buddaboon C, Kunuthai C, Sriphirom P, Towprayoon S, Tokida T, Padre A, Minamikawa K 2018: Evaluating the effects of alternate wetting and drying (AWD) on methane (CH4) and nitrous oxide (N2O) emissions from a paddy field in Thailand. Soil Sci. Plant Nutr, doi:10.1080/00380768.2017.1399044
  • Conen F, Smith KA, Yagi K 2010: Rice cultivation. In Methane and Climate Change, Eds. Reay D, Smith P, van Amstel A, pp. 115–135. Earthscan Ltd., London.
  • Corton TM, Bajita JB, Grospe FS, Pamplona RR, Asis CA Jr, Wassmann R, Lantin RS, Buendia LV 2000: Methane emissions from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutr. Cycl. Agroecosyst., 58, 37–53. doi:10.1023/A:1009826131741
  • Fox J, Weisberg S 2011: An R Companion to Applied Regression. Sage, Thousand Oaks, CA.
  • Furukawa Y, Hosen Y, Rodriquez R, Agbisit R 2007: Effect of timing of N topdressing and irrigation on CH4 and N2O emissions under the AWD management. In Annual Review and Planning Meeting. IRRI-Japan Project, Eds. Hosen Y, pp. 94–106. International Rice Research Institute, Los Baños, Philippines.
  • Gogoi N, Baruah A, Gogoi B, Gupta PK 2008: Methane emission from two different rice ecosystems (Ahu and Sali) at lower brahmaputra valley zone of north east India. Appl. Ecol. Environ. Res., 6, 99–112. doi:10.15666/aeer/0603_099112
  • Granli T, Bøckman OC 1994: Nitrous oxide from agriculture. Norwegian J. Agri. Sci. Supp., 12, 1–128.
  • Harada H, Kobayashi H, Shindo H 2007: Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: life-cycle inventory analysis. Soil Sci. Plant Nutr., 53, 668–677. doi:10.1111/j.1747-0765.2007.00174.x
  • Hou AX, Chen GX, Wang ZP, Cleemput VO, Patrick WH Jr 2000: Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci. Soc. Am. J., 64, 2180–2186. doi:10.2136/sssaj2000.6462180x
  • Inubushi K, Hori K, Matsumoto S, Wada H 1997: Anaerobic decomposition of organic carbon in paddy soil in relation to methane emission to the atmosphere. Water Sci. Tech., 36, 523–530.
  • IPCC 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4: agriculture, Forestry and Other Land Use. Eds. Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K. Institute for Global Environmental Studies (IGES), Hayama, Japan.
  • Ishibashi E, Yamamoto S, Akai N, Tsuruta H 2009: The influence of no-till direct seeding cultivation on greenhouse gas emissions from rice paddy fields in Okayama, western Japan 5: annual emission of CH4, N2O and CO2 from rice paddy fields under different cultivation methods and carbon sequestration into paddy soils. Jpn. J. Soil Sci. Plant Nutr., 80, 123–135. (in Japanese with English summary).
  • Itoh M, Sudo S, Mori S et al. 2011: Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric. Ecosyst. Environ., 141, 359–372. doi:10.1016/j.agee.2011.03.019
  • Jermsawatdipong P, Murase J, Prabuddham P, Hasathon Y, Khomthong N, Naklang K, Watanabe A, Haraguchi H, Kimura M 1994: Methane emission from plots with differences in fertilizer application in thai paddy fields. Soil Sci. Plant Nutr., 40, 63–71. doi:10.1080/00380768.1994.10414279
  • Jiao Z, Hou A, Shi Y, Huang G, Wang Y, Chen X 2007: Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community. Comm. Soil Sci. Plant Anal., 37, 1889–1903. doi:10.1080/00103620600767124
  • Jugsuhinda A, Delaune RD, Lindau CW, Sulaeman E, Pezeshki SR 1996: Factors controlling carbon dioxide and methane production in acid sulfate soils. Water Air Soil Pollut., 87, 345–355. doi:10.1007/BF00696846
  • Kenward MG, Roger JH 1997: An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Anal., 53, 2583–2595. doi:10.1016/j.csda.2008.12.013
  • Kimura M, Ando H, Haraguchi H 1991: Estimation of potential CO2 and CH4 production in Japanese paddy fields. Environ Sci., 4, 15–25.
  • Ko YK, Lee JS, Kim MT, Kang HW, Kang UG, Lee DC, Shin YG, Kim KY, Lee KB 2002: Effects of cultural practices on methane emission in tillage and no-tillage practices from rice paddy fields. Korean J. Sci. Fertil., 35, 216–222.
  • Kralova M, Masscheleyn PH, Lindau CW, Patrick WH Jr 1992: Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential. Water Air Soil Poll., 61, 31–47. doi:10.1007/BF00478364
  • Kumar J, Viyol SV 2009: Short-term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ., 7, 1116.
  • Lampayan RM, Bouman BAM, de Dios JL et al. 2004: Adoption of water saving technologies in rice production in the Philippines. Food and Fertilizer Technology Center Extension Bulletin 548, 15pp. FFTC, Republic of China on Taiwan.
  • Linquist BA, Adviento-Borbe MA, Pittelkow CM, Kessel C, Groenigen KJ 2012: Ferilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crops Res., 135, 10–21. doi:10.1016/j.fcr.2012.06.007
  • Littell RC, Stroup WW, Milliken GA, Wolfinger RD, Schabenberger O 2006: SAS for Mixed Models, 2nd Edition. SAS Institute, Cary, NC.
  • Minami K, Neue HU 1994: Rice paddies as a methane source. Clim. Change, 27, 13–26. doi:10.1007/BF01098470
  • Minamikawa K, Fumoto T, Itoh M, Hayano M, Sudo S, Yagi K 2014: Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model. Biol. Fertil. Soils, 50, 879–880. doi:10.1007/s00374-014-0909-8
  • Minamikawa K, Tokida T, Sudo S, Padre A, Yagi K 2015: Guidelines for Measuring CH4 and N2O Emissions from Rice Paddies by a Manually Operated Closed Chamber Method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan.
  • Mosier AR, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O 1998: Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse inventory methodology. Nutr. Cycl. Agroecosys., 52, 225–248. doi:10.1023/A:1009740530221
  • Myhre G, Shindell D, Breon FM et al. 2013: Anthropogenic and natural radiative forcing. In Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the of the Intergovernmental Panel on Climate Change, Eds. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgeley PM. Cambridge University Press, Cambridge, UK and New York, NY.
  • Pramono A, Setyanto P 2015: CH4 emission on integrated crop and livestock system. Proceedings of National Seminar on Information and Mapping of Land Resources System Supporting to Self Food Sufficiency, 29–30 July 2015, IAARD, Indonesian Ministry of Agriculture, Bogor, pp.283–290.
  • Rochette P, Angers DA, Chantigny MH, Gagnon B, Bertrand N 2008: N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures. Can J. Soil Sci., 88, 175–187. doi:10.4141/CJSS06016
  • Rosenberg M, Adams DC, Gurevitch J 2000: Statistical Software for Meta-Analysis, Version 2.1 Release 5.1. Sinauer Associates Inc., Sunderland, MA.
  • Sander BO, Wassmann R, Siopongco JDLC 2015: Mitigating greenhouse gas emissions from rice production through water-saving techniques: potential, adoption and empirical evidence. In Climate Change and Agricultural Water Management in Developing Countries, Eds. Hoanh CT, Smakhtin V, Johnston T, pp. 193–207, CABI, Oxford.
  • Setyanto P, Pramono A, Adriany TA, Susilawati HL, Tokida T, Padre A, Minamikawa K 2018: Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. doi:10.1080/00380768.2017.1409600
  • Sibayan E, Pascual K, Grospe F, Casil ME, Tokida T, Padre A, Minamikawa K 2018: Effects of alternate wetting and drying technique on greenhouse gas emissions from irrigated rice paddy in Central Luzon Philippines. Soil Sci. Plant Nutr.doi:10.1080/00380768.2017.1401906
  • Smakgahn K, Fumoto T, Yagi K 2009: Validation of revised DNDC model for methane emissions from irrigated rice fields in Thailand and sensitivity analysis of key factors. J. Geophys. Res., 114, G02017. doi:10.1029/2008JG000775
  • Takai Y, Koyama T, Kamura T 1963: Microbial metabolism in reduction process of paddy soils (Part 2) Effect of iron and organic matter on the reduction process (1). Soil Sci. Plant Nutr., 9, 10–14. doi:10.1080/00380768.1963.10431049
  • Tran DH, Hoang TN, Tokida T, Padre A, Minamikawa K 2018: Impacts of alternate wetting and drying on greenhouse gas emission from paddy field in Central Vietnam. Soil Sci. Plant Nutr.doi:10.1080/00380768.2017.1409601
  • Wang Z, Delaune RD, Masscheleyn PH, Patrick WH Jr 1993: Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J., 57, 382–385. doi:10.2136/sssaj1993.03615995005700020016x
  • Wassmann R, Dobermann A 2006: Greenhouse gas emission from rice fields: what do we know and where should we head for? The 2nd Joint International Conference on Sustainable Energy and Environment (SEE 2006), 21–23 November 2006, Bangkok, Thailand.
  • Wassmann R, Neue HU, Lantin RS, Buendia LV, Rennenberg H 2000a: Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries. Nutr. Cycl. Agroecosyst., 58, 1–12. doi:10.1023/A:1009848813994
  • Wassmann R, Neue HU, Lantin RS, Makarim K, Chareonsilp N, Buendia LV, Rennenberg H 2000b: Characterization of methane emissions from rice fields in Asia. II. Differences among irrigated, rainfed, and deepwater rice. Nutr. Cycl. Agroecosyst., 58, 13–22. doi:10.1023/A:1009822030832
  • Yagi K, Minami K 1990: Effect of organic matter application on methane emission from some Japanese rice fields. Soil Sci. Plant. Nutr., 36, 599–610. doi:10.1080/00380768.1990.10416797
  • Yagi K, Minami K, Ogawa Y 1998: Effects of water percolation on methane emission from rice paddies: a lysimeter experiment. Plant Soil, 198, 193–200. doi:10.1023/A:1004379914540
  • Yagi K, Tsuruta H, Kanda K, Minami K 1996: Effect of water management on methane emission from a Japanese paddy field: automated methane monitoring. Global Biogeochem. Cycles, 10, 255–267. doi:10.1029/96GB00517
  • Yagi K, Tsuruta H, Minami K 1997: Possible options for mitigating methane emission from rice cultivation. Nutr. Cycl. Agroecosys., 49, 213–220. doi:10.1023/A:1009743909716
  • Yan X, Yagi K, Akiyama H, Akimoto H 2005: Statistical analysis of the major variables controlling methane emissions from rice fields. Global Change Biol., 11, 1131–1141. doi:10.1111/j.1365-2486.2005.00976.x
  • Yang SS, Chang S 1998: Effect of environmental conditions on methane production and emission from paddy soil. Agric. Ecosyst. Environ., 69, 69–80. doi:10.1016/S0167-8809(98)00098-X
  • Yao H, Conrad R, Wassmann R, Neue HU 1999: Effects of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, Philippines and Italy. Biogeochemistry, 47, 269–295. doi:10.1007/BF00992910

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.