962
Views
6
CrossRef citations to date
0
Altmetric
Plant nutrition

Comparative characterization of aluminum responsive transcriptome in Arabidopsis roots: comparison with other rhizotoxic ions at different stress intensities

ORCID Icon, , &
Pages 469-481 | Received 15 Jan 2018, Accepted 15 Mar 2018, Published online: 23 Mar 2018

References

  • Aoki Y, Okamura Y, Tadaka S, Kinoshita K, Obayashi T 2016: ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol., 57, e5 (1–9). doi:10.1093/pcp/pcv165
  • Arenhart RA, Lima JCDE, Pedron M, et al. 2013: Involvement of ASR genes in aluminium tolerance mechanisms in rice. 52–67. doi:10.1111/j.1365-3040.2012.02553.x
  • Balzergue C, Dartevelle T, Godon C, et al. 2017: Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat. Commun., doi:10.1038/ncomms15300
  • Brahim S, Joke D, Ann C, Jean-Paul N, Marjo T, Arja T, Sirpa K, Frank VB, Karen S, Jaco V 2010: Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J. Plant Physiol., 167, 247–254. doi:10.1016/j.jplph.2009.09.015
  • Chaves MM, Flexas J, Pinheiro C 2009: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot., 103, 551–560. doi:10.1093/aob/mcn125
  • Chen H, Boutros PC 2011: VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 12, 35. doi:10.1186/1471-2105-12-35
  • Chen J, Wang WH, Wu FH, You CY, Liu TW, Dong XJ, He JX, Zheng HL 2013: Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil, 362, 301–318. doi:10.1111/j.1744-7909.2010.00946.x
  • Claeys H, Inze D 2013: The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol., 162, 1768–1779. doi:10.1104/pp.113.220921
  • Cuypers A, Karen S, Jos R, et al. 2011: The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J. Plant Physiol., 168. 309–316. doi:10.1016/j.jplph.2010.07.010
  • Daspute AA, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda SK, Koyama H 2017: Transcriptional regulation of aluminum-tolerance genes in higher plants: clarifying the underlying molecular mechanisms. Front. Plant Sci., 8, 1–12. doi:10.3389/fpls.2017.01358
  • Ding ZJ, Yan JY, Xu XY, Li GX, Zheng SJ 2013: WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. Plant J., 76, 825–835. doi:10.1111/tpj.12337
  • Dudev T, Lim C 2014: Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem. Rev., 114, 538–556. doi:10.1021/cr4004665
  • Flexas J, Diaz-Espejo A, Gago J, Gallé A, Galmés J, Gulías J, Medrano H 2014: Photosynthetic limitations in Mediterranean plants: a review. Environ. Exp. Bot., 103, 12–23. doi:10.1016/j.envexpbot.2013.09.002
  • Flexas J, Medrano H 2002: Drought-inhibition of photosynthesis in C3plants: stomatal and non-stomatal limitations revisited. Ann. Bot., 89, 183–189. doi:10.1093/aob/mcf027
  • Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S 1992: Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic Petunia. Plant Physiol., 99, 263–268. doi:10.1104/pp.99.1.263
  • Guo L, Lobenhofer EK, Wang C, et al. 2006: Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nat. Biotechnol., 24, 1162–1169. doi:10.1038/nbt1238
  • Guo P, Li Q, Qi Y-P, Yang L-T, Ye X, Chen -H-H, Chen L-S 2017: Sulfur-mediated-alleviation of aluminum-toxicity in Citrus grandis seedlings. Int. J. Mol. Sci., 18, 2570.  http://www.mdpi.com/1422-0067/18/12/2570  doi:10.3390/ijms18122570
  • Hoekenga OA, Maron LG, Piñeros MA, et al. 2006: AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA, 103, 9738–9743. doi:10.1073/pnas.0602868103
  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K 1999: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol., 17, 287–291. doi:10.1038/7036
  • Kinraide TB, Wang P 2010: The surface charge density of plant cell membranes (σ): an attempt to resolve conflicting values for intrinsic σ. J. Exp. Bot., 61, 2507–2518. doi:10.1093/jxb/erq082
  • Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Piñeros MA, Kochian LV, Koyama H 2007: Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol., 145, 843–852. doi:10.1073/pnas.0700117104
  • Kobayashi Y, Kobayashi Y, Watanabe T, Shaff JE, Ohta H, Kochian L, Wagatsuma T, Kinraide TB, Koyama H 2013: Molecular and physiological analysis of Al3+ and H+ rhizotoxicities at moderately acidic conditions. Plant Physiol., 163, 180–192. doi:10.1104/pp.113.222893
  • Kobayashi Y, Sadhukhan A, Tazib T, et al. 2016: Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana. Plant, Cell Environ., 39. 918–934. doi:10.1111/pce.12691
  • Kusunoki K, Nakano Y, Tanaka K, Sakata Y, Koyama H, Kobayashi Y 2017: Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance. Plant. Cell Environ., 40, 249–263. doi:10.1111/pce.12866
  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M 2007: Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc. Natl. Acad. Sci. USA, 104, 9900–9905. doi:10.1073/pnas.0700117104
  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD 2005: ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J., 41, 353–363. doi:10.1111/j.1365-313X.2004.02306.x
  • Li Y, Huang J, Song X, Zhang Z, Jiang Y, Zhu Y, Zhao H, Ni D 2017: An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant. Planta, 246, 91–103. doi:10.1007/s00425-017-2688-6
  • Liu J, Piñeros MA, Kochian LV 2014: The role of aluminum sensing and signaling in plant aluminum resistance. J. Integr. Plant Biol, 56, 221–230. doi:10.1111/jipb.12162
  • MAQC Consortium 2006: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol., 24. 1151–1161. doi:10.1038/nbt1239
  • Magalhaes JV, Liu J, Guimarães CT, et al. 2007: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet., 39. 1156–1161. doi:10.1038/ng2074
  • Matsuo M, Johnson JM, Hieno A, et al. 2015: High redox responsive transcription factor1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots. Mol. Plant, 8. 1253–1273. doi:10.1016/j.molp.2015.03.011
  • Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A, Raya-González J, Jiménez-Domínguez G, Chávez-Calvillo G, Rellán-Álvarez R, Herrera-Estrella L 2017: Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc. Natl. Acad. Sci., 114, E3563–E3572. doi:10.1073/pnas.1701952114
  • Provart NJ, Gil P, Chen W, Han B, Chang H-S, Wang X, Zhu T 2003: Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol., 132, 893–906. doi:10.1104/pp.103.021261
  • Qian P, Sun R, Ali B, Gill RA, Xu L, Zhou W 2014: Effects of hydrogen sulfide on growth, antioxidative capacity, and ultrastructural changes in oilseed rape seedlings under aluminum toxicity. J. Plant Growth Regul., 33, 526–538.
  • Rodriguez L, Gonzalez-Guzman M, Diaz M, et al. 2014: C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in arabidopsis, Plant Cell Online, 26. 4802–4820. doi:10.1105/tpc.114.129973
  • Sakano K 1998: Revision of biochemical pH-Stat: involvement of alternative pathway metabolisms. Plant Cell Physiol., 39, 467–473. doi:10.1093/oxfordjournals.pcp.a029393
  • Sarry JE, Kuhn L, Ducruix C, et al. 2006: The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 6. 2180–2198. doi:10.1002/pmic.200500543
  • Sawaki Y, Iuchi S, Kobayashi Y, et al. 2009: STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol., 150. 281–294. doi:10.1104/pp.108.134700
  • Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV 2010: GEOCHEM-EZ : a chemical speciation program with greater power and flexibility. Plant Soil, 330, 207–214.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2498–2504. doi:10.1101/gr.1239303
  • Smeets K, Opdenakker K, Remans T, Van Sanden S, Van Belleghem F, Semane B, Horemans N, Guisez Y, Vangronsveld J, Cuypers A 2009: Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. J. Plant Physiol., 166, 1982–1992. doi:10.1016/j.jplph.2009.06.014
  • Suzuki Y, Kawazu T, Koyama H 2004: RNA isolation from siliques, dry seeds, and other tissues of Arabidopsis thaliana. Biotechniques, 37, 542–544.
  • Tattini M, Loreto F, Fini A, Guidi L, Brunetti C, Velikova V, Gori A, Ferrini F 2015: Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. New Phytol., 207, 613–626. doi:10.1111/nph.13380
  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M 2004: MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J., 37, 914–939. doi:10.1111/j.1365-313X.2004.02016.x
  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A 2003: PANTHER: a library of protein families and subfamilies indexed by function. Genome Res., 13, 2129–2141. doi:10.1101/gr.772403
  • Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H 2015: Sensitive to proton rhizotoxicity1, calmodulin binding transcription activator2, and other transcription factors are involved in aluminum-activated malate transporter1 expression. Plant Physiol., 167, 991–1003. doi:10.1104/pp.114.256552
  • Wu SJ, Ding L, Zhu JK 1996: SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 8, 617–627. doi:10.1105/tpc.8.4.617
  • Xu JM, Fan W, Jin JF, Lou HQ, Chen WW, Yang JL, Zheng SJ 2017: Transcriptome analysis of al-induced genes in buckwheat (Fagopyrum esculentum Moench) root apex: new insight into al toxicity and resistance mechanisms in an al accumulating species. Front. Plant Sci., 8, 1–14. doi:10.3389/fpls.2017.01141
  • Yamamoto YY, Yoshioka Y, Hyakumachi M, Maruyama K, Yamaguchi-Shinozaki K, Tokizawa M, Koyama H 2011: Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data. BMC Plant Biol., 11, 39. doi:10.1186/1471-2229-11-39
  • Yokosho K, Yamaji N, Ma JF 2014: Global transcriptome analysis of al-induced genes in an al-accumulating species, common buckwheat (Fagopyrum esculentum Moench). Plant Cell Physiol., 55, 2077–2091. doi:10.1093/pcp/pcu135
  • You J, Liu X, Zhang B, Xie Z, Hou Z, Yang Z 2015: Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade. J. Ginseng Res., 39, 81–88. doi:10.1016/j.jgr.2014.08.002
  • Zhao C-R, Ikka T, Sawaki Y, Kobayashi Y, Suzuki Y, Hibino T, Sato S, Sakurai N, Shibata D, Koyama H 2009: Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana. BMC Plant Biol., 9, 32. doi:10.1186/1471-2229-9-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.