971
Views
5
CrossRef citations to date
0
Altmetric
Plant Nutrition

Iron-deficiency response and expression of genes related to iron homeostasis in poplars

, , , , , & show all
Pages 576-588 | Received 28 Jan 2018, Accepted 21 May 2018, Published online: 13 Jun 2018

References

  • Adler PR, Grosso SJD, Parton WJ 2007: Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Appli., 17, 675–691. doi: 10.1890/05-2018
  • Briat JF, Dubos C, Gaymard F 2015: Iron nutrition, biomass production, and plant product quality. Trends Plant Sci., 20, 33–40. doi: 10.1016/j.tplants.2014.07.005
  • Brunner AM, Yakovlev IA, Strauss SH 2004: Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol., 4, 14. doi: 10.1186/1471-2229-4-14
  • Cao J, Huang J, Yang Y, Hu X 2011: Analyses of the oligopeptide transporter gene family in poplar and grape. BMC Genomics., 12, 465. doi: 10.1186/1471-2164-12-465
  • Colangelo EP, Guerinot ML 2004: The essential Basic Helix-Loop-Helix protein FIT1 is required for the iron deficiency response. Plant Cell., 16, 3400–3412. doi: 10.1105/tpc.104.024315
  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML 2003: Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol., 133, 1102–1110. doi: 10.1104/pp.103.025122
  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL 2001: Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature, 409, 346–349. doi: 10.1038/35053080
  • DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL 2004: Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. Plant J., 39, 403–414. doi: 10.1111/j.1365-313X.2004.02128.x
  • Eide D, Broderius M, Fett J, Guerinot ML 1996: A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA., 93, 5624–5628. doi: 10.1073/pnas.93.11.5624
  • Eriksson ME, Israelsson M, Olsson O, Moritz T 2000: Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat. Biotechnol., 18, 784–788. doi: 10.1038/77355
  • FAO-GIS 1998: Distribution of Calcisols http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/calcareous-soils/en/
  • Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F, Abadía A, Abadia J, Álvarez-Fernández A, Briat JF 2014: Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New. Phytologist., 201, 155–167. doi: 10.1111/nph.12471
  • Fourcroy P, Tissot N, Gaymard F, Briat JF, Dubos C 2016: Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system. Mol. Plant., 9, 485–488. doi: 10.1016/j.molp.2015.09.010
  • Gordon JC 2001: Poplars: trees of the people, trees of the future. For. Chron., 77, 217–219. doi: 10.5558/tfc77217-2
  • Hell R, Stephan UW 2003: Iron uptake, trafficking and homeostasis in plants. Planta, 216, 541–551.
  • Higuchi K, Kanazawa K, Nishizawa NK, Chino M, Mori S 1994: Purification and characterization of nicotianamine synthase from Fe- deficient barley roots. Plant Soil., 165, 173–179. doi: 10.1007/BF00008059
  • Higuchi K, Nishizawa NK, Yamaguchi H, Roemheld V, Marschner H, Mori S 1995: Response of nicotianamine synthase activity to Fe deficiency in tobacco plants as compared with barley. J. Exp. Bot., 46, 1061–1063. doi: 10.1093/jxb/46.8.1061
  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S 1999: Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol., 119, 471–479. doi: 10.1104/pp.119.2.471
  • Huang D, Dai W 2015: Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency. J. Plant Physiol., 186–187, 59–67. doi: 10.1016/j.jplph.2015.09.001
  • IGBP-DIS 1998: SoilData(V.0) A Program for Creating Global Soil-Property Databases. IGBP Global Soils Data Task, France.
  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK 2003: Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long‐distance transport of iron and differentially regulated by iron. Plant J., 36, 366–381. doi: 10.1046/j.1365-313X.2003.01878.x
  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK 2009: Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J. Biol. Chem., 284, 3470–3479. doi: 10.1074/jbc.M806042200
  • Isebrands JG, Sturos JA, Crist JB 1979: Integrated utilization of biomass, a short-rotation intensively cultured populous raw material. TAPPI, 627, 67–70.
  • Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK 2011: A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J. Biol. Chem., 286, 24649–24655. doi: 10.1074/jbcM111.221168
  • Ishimaru Y, Kim S, Tsukamoto T et al. 2007: Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc. Nat. Aca. Sci. USA., 104, 7373–7378. doi: 10.1073/pnas.0610555104
  • Jakoby M, Wang HY, Reidt W, Weisshaar B, Bauer P 2004: FRU (BHLH029) is required for induction of iron mobilization genes. In Arabidopsis Thaliana. FEBS Lett, 577., 528–534.
  • Jean ML, Schikora A, Mari S, Briat JF, Curie C 2005: A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J., 44, 769–782. doi: 10.1111/j.1365-313X.2005.02569.x
  • Keller T, Koch W 1964: The effect of iron chelate fertilization of poplar upon CO2-uptake, leaf size, and content of leaf pigments and iron. Plant Soil., 20, 116–126. doi: 10.1007/BF01378103
  • Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Kim SH, Doty SL 2016: Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr. Plant., 6, 38–47. doi: 10.1016/j.cpb.2016.08.001
  • Kobayashi T, Shinkai A, Yasufuku N, Omine K, Marui A, Nagafuchi T 2012: Field surveys of soil conditions in steppe of northeastern mongolia. J. Arid Land Studies, 22, 25–28.
  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK 2004: OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J., 39, 415–424. doi: 10.1111/j.1365-313X.2004.02146.x
  • Lee S, Jeon US, Lee SJ et al. 2009: Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc. Natl. Acad. Sci. USA, 106, 22014–22019. doi: 10.1073/pnas.0910950106
  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M 2002: The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc. Natl. Acad. Sci. USA, 99, 13938–13943. doi: 10.1073/pnas.212448699
  • Ling HQ, Koch G, Bäumlein H, Ganal MW 1999: Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc. Natl. Acad. Sci. USA, 96, 7098–7103. doi: 10.1073/pnas.96.12.7098
  • Maillard A, Diquélou S, Billard V, Laîné P, Garnica M, Prudent M, Garcia-Mina JM, Yvin JC, Ourry A 2015: Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front. Plant Sci., 6, 317. doi: 10.3389/fpls.2015.00317
  • Marschner H 1995: Mineral Nutrition of Higher Plants. 2nd. Academic Press, London.
  • Masuda H, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung MS, Ishimaru Y, Ogo Y, Nakanishi H, Nishizawa NK 2017: A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS ONE, 12, e0173441. doi: 10.1371/iournal.pone.0173441
  • Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK 2009: Overexpression of the barley nicotianamine synthase gene HvNAS1 increase iron and zinc concentrations in rice grains. Rice, 2, 155–166. doi: 10.1007/s12284-009-9031-1
  • Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M 2010: Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell. Mol. Life Sci., 67, 3763–3784. doi: 10.1007/s00018-010-0445-0
  • Nozoye T, Aung MS, Masuda H, Nakanishi H, Nishizawa NK 2017b: Bioenergy grass [Erianthus ravennae (L.) Beauv.] secretes two members of mugineic acid family phytosiderophores which involved in their tolerance to Fe deficiency. Soil. Sci. Plant Nutri., 63, 543–552. doi: 10.1080/00380768.2017.1394168
  • Nozoye T, Otani M, Senoura T, Nakanishi H, Nishizawa NK 2017a: Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil. Plant Soil., 418, 75–88. doi: 10.1007/s11104-016-3134-4
  • Oki H, Kim S, Nakanishi H, Takahashi M, Yamaguchi H, Mori S, Nishizawa NK 2004: Directed evolution of yeast ferric reductase to produce plants with tolerance to iron deficiency in alkaline soils. Soil Sci. Plant Nut ., 50, 1159–1165. doi: 10.1080/00380768.2004.10408589
  • Pich A, Scholz G 1996: Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J. Exp. Bot., 294, 41–47. doi: 10.1093/jxb/47.1.41
  • Pires N, Dolan L 2010: Origin and diversification of basic-Helix-Loop-Helix proteins in plants. Mol. Biol. Evol., 27, :862–874. doi: 10.1093/molbev/msp288
  • Rajniak J, Giehl RFH, Chang E, Murgia I, Von Wirén N, Sattely ES 2018: Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol., 14, 442–450. doi: 10.1038/s41589-018-0019-2
  • Ramon Magsaysay award of Peace and International Understanding, 2003 http://rmaward.asia/awardees/toyama-seiei/
  • Regier N, Streb S, Cocozza C, Schaub M, Cherubini P, Zeeman SC, Frey B 2009: Droughttolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant Cell Environ., 32, 1724–1736. doi: 10.1111/j.1365-3040.2009.02030.x
  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML 1999: A ferric-chelate reductase for iron uptake from soils. Nature, 397, 694–697. doi: 10.1038/17800
  • Römheld V, Marschner M 1986: Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol., 80, 175–180. doi: 10.1104/pp.80.1.175
  • Rudolph A, Becker R, Scholz G, Procházka Z, Toman J, Macek T, Herout V 1985: The occurrence of the amino acid nicotianamine in plants and microorganisms. A reinvestigation. Biochem. Physiol. Pflanzen., 180, 557–563. doi: 10.1016/S0015-3796(85)80036-6
  • Sakai A, Larcher W 1987: Frost Survival of Plants: responses and Adaptation to Freezing Stress. Ecological Studies. 62. Springer-Verlag, Berlin Heidelberg Germany. ISBN 978-3-642-71745-1. doi: 10.1007/978-3-642-71745-1
  • Sakamoto S, Takata N, Oshima Y, Yoshida K, Taniguchi T, Mitsuda N 2016: Wood reinforcement of poplar by rice NAC transcription factor. Sci. Rep., 6, 19925. doi: 10.1038/srep19925
  • Santi S, Schmidt W 2009: Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New. Phytologist., 183, 1072–1084. doi: 10.1111/j.1469-8137.2009.02908.x
  • Schmid NB, Giehl RFH, Döll S, Mock HP, Strehmel N, Scheel D, Kong X, Hider RC, Von Wirén N 2014: Feruloyl-CoA 6ʹ-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol, 164, 160–172.
  • Schuler M, Rellán-Álvarez R, Fink-Straube C, Abadía J, Bauer P 2012: Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell., 24, 2380–2400. doi: 10.1105/tpc.112.099077
  • Sisó-Terraza P, Luis-Villarroya A, Fourcroy P, Briat J-F, Abadía A, Gaymard F, Abadía J, Álvarez-Fernández A 2016: Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH. Front. Plant Sci., 7, 1711. doi: 10.3389/fpls.2016.01711
  • Stanton B, Eaton J, Johnson J, Rice D, Schuette B, Moser B 2002: Hybrid poplar in the Pacific Northwest: the effects of market-driven management. J. For., 100, 28–33.
  • Stephan UW, Schmidke I, Stephan VW, Scholz G 1996: The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals, 9, 84–90. doi: 10.1007/BF00188095
  • Suzuki K, Higuchi K, Nakanishi H, Nishizawa NK, Mori S 1999: Cloning of nicotianamine synthase genes from Arabidopsis thaliana.. Soil Sci. Plant Nutr., 45, 993–1002. doi: 10.1080/00380768.1999.10414350
  • Takabe T, Uchida A, Shinagawa F, Terada Y, Kajita H, Tanaka Y, Takabe T, Hayashi T, Kawai T, Takabe T 2008: Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances growth rate as well as abiotic stress tolerance of poplar plants. Plant Growth Regul., 56, 265–273. doi: 10.1007/s10725-008-9306-3
  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK 2003: Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell., 15, 1263–1280.
  • Townsend RA, Kar SP, Miller RO 2014: Poplar (Populus spp.) Trees for Biofuel Production. eXtension 70456 http://articles.extension.org/pages/70456/poplar-populus-spp-trees-for-biofuel-production
  • Tuskan GA, DiFazio S, Jansson S et al. 2006: The Genome of Black Cottonwood. Populus Trichocarpa (Torr. Gray). Science, 313, 1596–1604. doi: 10.1126/science.1128691
  • Ushio Y, Mori S, Nishizawa NK 2003: Novel nicotianamine synthase and the AtNAS4 gene in Arabidopsis. Japanese Patent No. 2003–70926.
  • Xiong H, Guo X, Kobayashi T et al. 2014: Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition. Plant Physiol. Biochem., 80, 83–89. doi: 10.1016/j.plaphy.2014.03.021
  • Yin L, Wang Y, Yuan M, Zhang X, Xu X, Han Z 2014: Characterization of MxFIT, an iron deficiency induced transcriptional factor in Malus xiaojinensis. Plant Physiol. Biochem., 75, 89e95. doi: 10.1016/j.plaphy.2013.12.007
  • Yu LH, Wu SJ, Peng YS et al. 2016: Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol. J., 14, 72–84. doi: 10.1111/pbi.12358
  • Yuan YX, Zhang J, Wang DW, Ling HQ 2005: AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res., 15, 613–621. doi: 10.1038/sj.cr.7290331
  • Zhang L, Liu M, Qiao G, Jiang J, Jiang Y, Zhuo R 2013: Transgenic poplar “NL895ʹ’ expressing CpFATB gene shows enhanced tolerance to drought stress. Acta. Physiol. Plant, 35, 603–613. doi: 10.1007/s11738-012-1101-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.