1,363
Views
12
CrossRef citations to date
0
Altmetric
Plant nutrition

Iron delivery to the growing leaves associated with leaf chlorosis in mugineic acid family phytosiderophores-generating graminaceous crops

Pages 415-426 | Received 19 Jan 2021, Accepted 22 Jun 2021, Published online: 01 Jul 2021

References

  • Agarwala, S. C., S. S. Bisht, and C. P. Sharma. 1977. “Relative Effectiveness of Certain Heavy Metals in Producing Toxicity and Symptoms of Iron Deficiency in Barley.” Canadian Journal of Botany 55 (10): 1299–1307. doi:10.1139/b77-151.
  • Alcaraz, C. F., E. Hellín, F. Sevilla, and F. Martinez-Sánchez. 1985. “Influence of the Leaf Iron Contents on the Ferredoxin Levels in Citrus Plants.” Journal of Plant Nutrition 8 (7): 603–611. doi:10.1080/01904168509363371.
  • Álvarez-Fernández, A., P. Díaz-Benito, A. Abadia, L.-M. A-f, and J. Abadia. 2014. “Metal Species Involved in Long Distance Metal Transport in Plants.” Frontiers in Plant Science 5 (Article): 105. doi:10.3389/fpls.2014.00105.
  • Ando, Y., S. Nagata, S. Yanagisawa, and T. Yoneyama. 2013. “Copper in Xylem and Phloem Saps from Rice (Oryza Sativa): The Effect of Moderate Copper Concentrations in the Growth Medium on the Accumulation of Five Essential Metals and a Speciation Analysis of Copper-containing Compounds.” Functional Plant Biology 40 (1): 89–100. doi:10.1071/FP12158.
  • Aoyama, T., T. Kobayashi, M. Takahashi, S. Nagasaka, K. Usuda, Y. Kakei, Y. Ishimaru, H. Nakanishi, S. Mori, and N. K. Nishizawa. 2009. “OsYSL18 Is a Rice iron(III)-deoxymugineic Acid Transporter Specifically Expressed in Reproductive Organs and Phloem of Lamina Joints.” Plant Molecular Biology 70 (6): 681–692. doi:10.1007/s11103-009-9500-3.
  • Ariga, T., K. Hazama, S. Yanagisawa, and T. Yoneyama. 2014. “Chemical Forms of Iron in Xylem Sap from Graminaceous and Non-graminaceous Plants.” Soil Science and Plant Nutrition 60 (4): 460–469. doi:10.1080/00380768.2014.922406.
  • Balk, J., and T. A. Schaedler. 2014. “Iron Cofactor Assembly in Plants.” Annual Review of Plant Biology 65 (1): 125–153. doi:10.1146/annurev-arplant-050213-035759.
  • Barberon, M., and N. Geldner. 2014. “Radial Transport of Nutrients: The Plant Root as a Polarized Epithelium.” Plant Physiology 166 (2): 528–537. doi:10.1104/pp.114.246124.
  • Bashir, K., Y. Ishimaru, H. Shimo, S. Nagasaka, M. Fujimoto, H. Takahashi, N. Tsutsumi, G. An, H. Nakanishi, and N. K. Nishizawa. 2011. “The Mitochondrial Iron Transporter Is Essential for Plant Growth.” Nature Communications 2 (1): 322. doi:10.1038/ncomms1326.
  • Bollivar, D. W. 2006. “Recent Advances in Chlorophyll Biosynthesis.” Photosynthesis Research 89: 1–22.
  • Briat, J. F. 2008. “Iron Dynamics in Plants.” Advances in Botanical Research 46: 137–180.
  • Briat, J.-F., C. Duc, K. Ravet, and F. Gaymard. 2010. “Ferritins and Iron Storage in Plants.” . Biochimica Et Biophysica Acta (BBA) - General Subjects 1800 (8): 806–814. doi:10.1016/j.bbagen.2009.12.003.
  • Brown, J. C., R. S. Holmes, R. E. Shapiro, and A. W. Specht. 1953. “Effects of Phosphorus and Copper Salts on Iron Chlorosis of Rice in Flooded and Nonflooded Soil and the Associated Enzymatic Activity.” Soil Science 79 (5): 363–372. doi:10.1097/00010694-195505000-00005.
  • Brown, J. C., and L. O. Tiffin. 1960. “Iron Chlorosis in Soybeans as Related to the Genotype of Root Stock. 2. A Relationship between Susceptibility to Chlorosis & Capacity to Absorb Iron from Iron Chelate.” Soil Science 89 (1): 8–15. doi:10.1097/00010694-196001000-00003.
  • Brüggemann, W., K. Maas-Kantel, and P. R. Moog. 1993. “Iron Uptake by Leaf Mesophyll Cells: The Role of the Plasma Membrane-bound Ferric-chelate Reductase.” Planta 190 (2): 151–155. doi:10.1007/BF00196606.
  • Bughio, N., M. Takahashi, E. Yoshimura, N. N-k, and S. Mori. 1997. “Light-dependent Iron Transport into Isolated Barley Chloroplasts.” Plant and Cell Physiology 38 (1): 101–105. doi:10.1093/oxfordjournals.pcp.a029079.
  • Bughio, N., H. Yamaguchi, N. K. Nishizawa, H. Nakanishi, and S. Mori. 2002. “Cloning and Iron-regulated Metal Transporter from Rice.” Journal of Experimental Botany 53 (374): 1677–1682. doi:10.1093/jxb/erf004.
  • Cesco, S., M. Nikolic, V. Römheld, Z. Varanini, and R. Pinton. 2002. “Uptake of 59Fe from 59Fe-humate Complexes by Cucumber and Barley Plants.” Plant and Soil 241 (1): 121–128. doi:10.1023/A:1016061003397.
  • Chino, M. 1967. “Studies on the Heavy Metal Toxicities in Plants ‒ the Mechanism of the Occurrence of Heavy Metal Induced Iron Chlorosis.” Bull. Sci. Rep. Facul. Agric. Ibaraki Uni 15: 105–164.
  • Curie, C., Z. Panaviene, C. Loulergue, S. L. Dellaporta, J. F. Briat, and E. L. Walker. 2001. “Maize Yellow stripe-Like2 (YSL2) Encodes a Membrane Protein Directly Involved in Fe(III) Uptake.” Nature 409 (6818): 346–349. doi:10.1038/35053080.
  • Dekock, P. C. 1956. “Heavy Metal Toxicity and Iron Chlorosis.” Annals of Botany 20 (1): 133–141. doi:10.1093/oxfordjournals.aob.a083508.
  • Duy, D., R. Stübe, G. Wanner, and K. Philippar. 2011. “The Chloroplast Permease PIC1 Regulates Plant Growth and Development by Directing Homeostasis and Transport of Iron.” Plant Physiology 155 (4): 1709–1722. doi:10.1104/pp.110.170233.
  • Feng, H., F. An, S. Zhang, Z. Ji, H. Ling, and J. Zuo. 2006. “Light-Regulated, Tissue-Specific, and Cell Differentiation-Specific Expression of the Arabidopsis Fe(III)-Chelate Reductase Gene AtFRO6.” Plant Physiology 140 (4): 1345–1354. doi:10.1104/pp.105.074138.
  • Furukawa, J., N. Yamaji, H. Wang, N. Mitani, Y. Murata, K. Sato, M. Katsuhara, K. Takeda, and J. F. Ma. 2007. “An Aluminum-activated Citrate Transporter in Barley.” Plant and Cell Physiology 48 (8): 1081–1091. doi:10.1093/pcp/pcm091.
  • Gile, P. L., and J. O. Carrero. 1920. “Cause of Lime-induced Chlorosis and Availability of Iron in the Soil.” Journal of Agricultural Research 20: 33–62.
  • Grillet, L., P. Lan, W. Li, G. Mokkapati, and W. Schmidt. 2018. “IRON MAN Is a Ubiquitous Family of Peptides that Control IRON Transport in Plants.” Nature Plants 4 (11): 953–963. doi:10.1038/s41477-018-0266-y.
  • Grillet, L., L. Ouerdane, P. Flis, M. T. T. Hoang, M.-P. Isaure, R. Lobinski, C. Curie, and S. Mari. 2014. “Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants.” Journal of Biological Chemistry 289 (5): 2515–2525. doi:10.1074/jbc.M113.514828.
  • Grillet, L., and W. Schmidt. 2017. “The Multiple Facets of Root Iron Reduction.” Journal of Experimental Botany 68 (18): 5021–5027. doi:10.1093/jxb/erx320.
  • Gross, J., R. J. Stein, A. G. Fett-Neto, and J. Fett. 2003. “Iron Homeostasis Related Genes in Rice.” Genetics and Molecular Biology 26 (4): 477–497. doi:10.1590/S1415-47572003000400012.
  • Guelke, M., and F. von Blanckenburg. 2007. “Fractionation of Stable Iron Isotopes in Higher Plants.” Environmental Science & Technology 42 (6): 1896–1901. doi:10.1021/es062288j.
  • Hall, S. M., and D. A. Baker. 1972. “The Chemical Composition of Ricinus Phloem Exudate.” Planta 106 (2): 131–140. doi:10.1007/BF00383992.
  • Hantzis, L. J., G. E. Kroh, C. Jahn, M. Cantrell, G. Peers, M. Pilon, and K. Ravet. 2018. “A Program for Iron Economy during Deficiency Targets Specific Fe Proteins.” Plant Physiology 176 (1): 596–610. doi:10.1104/pp.17.01497.
  • Hazama, K., S. Nagata, T. Fujimori, S. Yanagisawa, and T. Yoneyama. 2015. “Concentrations of Metals and Potential Metal-binding Compounds and Speciation of Cd, Zn and Cu in Phloem and Xylem Saps from Castor Bean Plants (Ricinus Communis) Treated with Four Levels of Cadmium.” Physiologia Plantarum 154 (2): 243–255. doi:10.1111/ppl.12309.
  • Hell, R., and U. W. Stephan. 2003. “Iron Uptake, Trafficking and Homeostasis in Plants.” Planta 216 (4): 541–551. doi:10.1007/s00425-002-0920-4.
  • Hewitt, E. J. 1948. “Relation of Manganese and Some Other Metals to the Iron Status of Plants.” Nature 161 (4091): 489–490. doi:10.1038/161489a0.
  • Hewitt, E. J. 1951. “The Role of the Mineral Elements in Plant Nutrition.” Annual Review of Plant Physiology 2 (1): 25–52. doi:10.1146/annurev.pp.02.060151.000325.
  • Higuchi, K., K. Suzuki, H. Nakanishi, H. Yamaguchi, N. K. Nishizawa, and S. Mori. 1999. “Cloning of Nicotianamine Synthase Genes, Novel Genes Involved in the Biosynthesis of Phytosiderophores.” Plant Physiology 119 (2): 471–479. doi:10.1104/pp.119.2.471.
  • Higuchi, K., S. Watanabe, M. Takahashi, S. Kawasaki, H. Nakanishi, N. K. Nishizawa, and S. Mori. 2001. “Nicotianamine Synthase Gene Expression Differs in Barley and Rice under Fe-deficient Conditions.” The Plant Journal 25: 159–167.
  • Hirai, M., K. Higuchi, H. Sasaki, T. Suzuki, T. Maruyama, M. Yoshiba, and T. Tadano. 2007. “Contribution of Iron Associated with High-molecular-weight Substances to the Maintenance of the SPAD Value of Young Leaves of Barley under Iron-deficient Conditions.” Soil Science and Plant Nutrition 53 (5): 612–620. doi:10.1111/j.1747-0765.2007.00190.x.
  • Hunter, J. G., and O. Vergnano. 1953. “Trace-element Toxicities in Oat Plants.” Annals of Applied Biology 40 (4): 761–777. doi:10.1111/j.1744-7348.1953.tb01113.x.
  • Inoue, H., T. Kobayashi, T. Nozoye, M. Takahashi, Y. Kakei, K. Suzuki, M. Nakazono, H. Nakanishi, S. Mori, and N. K. Nishizawa. 2009. “Rice OsYSL15 Is an Iron-regulated iron(III)-deoxymugineic Acid Transporter Expressed in the Roots and Is Essential for Iron Uptake in Early Growth of the Seedlings.” Journal of Biological Chemistry 284 (6): 3470–3479. doi:10.1074/jbc.M806042200.
  • Inoue, H., D. Mizuno, M. Takahashi, H. Nakanishi, S. Mori, and N. K. Nishizawa. 2004. “A Rice FRD3-like (Osfrdl1) Gene Is Expressed in the Cells Involved in Long-distance Transport.” Soil Science and Plant Nutrition 50 (7): 1133–1140. doi:10.1080/00380768.2004.10408586.
  • Irving, H., and R. J. P. Williams. 1953. The Stability of Transition-Metal Complexes, Jounal of Chemical Society October 3192–3210.
  • Ishimaru, Y., H. Masuda, K. Bashir, H. Inoue, T. Tsukamoto, M. Takahashi, H. Nakanishi, et al. 2010. “Rice Metal-nicotianamine Transporter, OsYSL2, Is Required for the Long-distance Transport of Iron and Manganese.” The Plant Journal 62 (3): 379–390. DOI:10.1111/j.1365-313X.2010.04158.x.
  • Ishimaru, Y., M. Suzuki, T. Tsukamoto, K. Suzuki, M. Nakazono, T. Kobayashi, Y. Wada, et al. 2006. “Rice Plants Take up Iron as an Fe3+-phytosiderophore and as Fe2+.” The Plant Journal 45 (3): 335–346. DOI:10.1111/j.1365-313X.2005.02624.x.
  • Ishimaru, Y., R. Takahashi, K. Bashir, H. Shimo, T. Senoura, K. Sugimoto, K. Ono, et al. 2012. “Characterizing the Role of Rice NRAMP5 in Manganese, Iron and Cadmium Transport.” Scientific Reports 2 (1): 286. DOI:10.1038/srep00286.
  • Kato, M., S. Ishikawa, K. Inagaki, K. Chiba, H. Hayashi, S. Yanagisawa, and T. Yoneyama. 2010. “Possible Chemical Forms of Cadmium and Varietal Differences in Cadmium Concentrations in the Phloem Sap of Rice Plants (Oryza sativaL.).” Soil Science and Plant Nutrition 56 (6): 839–847. doi:10.1111/j.1747-0765.2010.00514.x.
  • Kawabe, S., T. Fukumorita, and M. Chino. 1980. “Collection of Rice Phloem Sap from Stylets of Homopterous Insects Severed by Yag Laser.” Plant and Cell Physiology 21 (8): 1319–1327. doi:10.1093/oxfordjournals.pcp.a076130.
  • Kawai, S., S. Takagi, and Y. Sato. 1988. “Mugineic Acid-family Phytosiderophores in Root-secretions of Barley, Corn and Sorghum Varieties.” Journal of Plant Nutrition 11 (6–11): 633–642. doi:10.1080/01904168809363829.
  • Kobayashi, T., A. J. Nagano, and N. K. Nishizawa. 2021. “Iron Deficiency-inducible Peptide-coding Genes OsIMA1 and OsIMA2 Positively Regulate a Major Pathway of Iron Uptake and Translocation in Rice.” . Journal of Experimental Botany 72 (6): 2196–2211. doi:10.1093/jxb/eraa546.
  • Kobayashi, T., Y. Ogo, M. S. Aung, T. Nozoye, R. N. Itai, H. Nakanishi, T. Yamakawa, and N. K. Nishizawa. 2010. “The Special Expression and Regulation of Transcription Factors IDEF1 and IDEF2.” Annals of Botany 105 (7): 1109–1117. doi:10.1093/aob/mcq002.
  • Koike, S., H. Inoue, D. Mizuno, M. Takahashi, H. Nakanishi, S. Mori, and N. K. Nishizawa. 2004. “OsYSL2 Is a Rice Metal-nicotianamine Transporter that Is Regulated by Iron and Expressed in the Phloem.” The Plant Journal 39 (3): 415–424. doi:10.1111/j.1365-313X.2004.02146.x.
  • Kroh, G. E., and M. Pilon. 2020. “Regulation of Iron Homeostasis and Use in Chloroplasts.” International Journal of Molecular Sciences 21 (9): 3395. doi:10.3390/ijms21093395.
  • Krüger, C., O. Berkowitz, U. W. Stephan, and R. Hell. 2002. “A Metal-binding Member of the Late Embryogenesis Abundant Protein Family Transports Iron in the Phloem ofRicinus Communis L.” Journal of Biological Chemistry 277 (28): 25062–25069. doi:10.1074/jbc.M201896200.
  • Lanquar, V., F. Leliève, S. Bolte, C. Hames, C. Alcon, D. Neumann, G. Vansuyt, et al. 2005. “Mobilization of Vacuolar Iron by AtNRAMP3 and AtNRAMP4 Is Essential for Seed Germination on Low Iron.” The EMBO Journal 24 (23): 4041–4051. DOI:10.1038/sj.emboj.7600864.
  • Lee J-Y, F. M. 2018. “Plasmodesmata in Phloem: Different Gateways for Different Cargoes.” Current Opinion in Plant Biology 43: 119–124. doi:10.1016/j.pbi.2018.04.014.
  • Lee, S., J. C. Chiecko, S. A. Kim, E. L. Walker, Y. Lee, M. L. Guerinot, and G. An. 2009. “Disruption of OsYSL15 Leads to Iron Inefficiency in Rice Plants.” Plant Physiology 150 (2): 786–800. doi:10.1104/pp.109.135418.
  • Liang, X., L. Qin, P. Liu, M. Wang, and H. Ye. 2014. “Genes for Iron-sulphur Cluster Assembly are Targets of Abiotic Stress in Rice, Oryza Sativa.” Plant, Cell & Environment 37 (3): 780–794. doi:10.1111/pce.12198.
  • Ma, J. F., and K. Nomoto. 1996. “Effective Regulation of Iron Acquisition in Graminaceous Plants. The Role of Mugineic Acids as Phytosiderophores.” Physiologia Plantarum 97 (3): 609–617. doi:10.1111/j.1399-3054.1996.tb00522.x.
  • Machold, O. 1971. “Lamellar Proteins of Green and Chlorotic Chloroplasts as Affected by Iron Deficiency and Antibiotics.” Biochimica Et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis 238 (2): 324–331. doi:10.1016/0005-2787(71)90099-2.
  • Madore, M. A., J. W. Oross, and W. J. Lucas. 1986. “Ymplastic Transport in Ipomea Tricolor Source Leaves.” Plant Physiology 82 (2): 432–442. doi:10.1104/pp.82.2.432.
  • Markwell, J. P., J. P. Thornber, and R. T. Boggs. 1979. “Higher Plant Chloroplasts: Evidence that All the Chlorophyll Exists as Chlorophyll-protein Complexes.” Proceedings of the National Academy of Sciences 76 (3): 1233–1235. doi:10.1073/pnas.76.3.1233.
  • Marschner, H., V. Römheld, and M. Kissel. 1987. “Localization of Phytosiderophore Release and of Iron Uptake along Intact Barley Roots.” Physiologia Plantarum 71 (2): 157–162. doi:10.1111/j.1399-3054.1987.tb02861.x.
  • Marsh, H. V., H. J. Evans, and G. Matrone. 1963. “Investigations of the Role of Iron in Chlorophyll Metabolism. I. Effect of Iron Deficiency on Chlorophyll and Heme Content and on the Activities of Certain Enzymes in Leaves.” Plant Physiology 38 (6): 632–638. doi:10.1104/pp.38.6.632.
  • Maruyama, T., K. Higuchi, M. Yoshida, and T. Tadano. 2005. “Comparison of Iron Availability in Leaves of Barley and Rice.” Soil Science and Plant Nutrition 51 (7): 1035–1042. doi:10.1111/j.1747-0765.2005.tb00142.x.
  • Mellor, D. P., and L. Maley. 1948. “Order of Stability of Metal Complexes.” Nature 161 (4090): 436–437. doi:10.1038/161436b0.
  • Mikami, Y., A. Saito, E. Miwa, and K. Higuchi. 2011. “Allocation of Fe and Ferric Chlate Reductase Activities in Mesophyll Cells of Barley and Sorghum under Fe-deficient Conditions.” Plant Physiology and Biochemistry 49 (5): 513–519. doi:10.1016/j.plaphy.2011.01.009.
  • Mino, Y., T. Ishida, N. Ota, M. Inoue, K. Nomoto, T. Takemoto, H. Tanaka, and Y. Sugiura. 1983. “Mugineic acid-iron(III) Complex and Its Structurally Analogous cobalt(III) Complex: Characterization and Implication for Absorption and Transport of Iron in Gramineous Plants.” Journal of the American Chemical Society 105 (14): 4671–4676. doi:10.1021/ja00352a024.
  • Mitsui, S., K. Tensho, K. Kumazawa, T. Fujita, and J. Yazaki. 1958. “Field Investigation of Chlorosis in Upland Rice Grown in the Fields near Copper Mining Factories.” Jap. Journal of Soil Science and Plant Nutrition 28: 505–507.
  • Mukherjee, I., N. H. Campbell, J. S. Ash, and E. L. Connolly. 2006. “Expression Profiling of the Arabidopsis Ferric Chelate Reductase (FRO) Gene Family Reveals Differential Regulation by Iron and Copper.” Planta 223 (6): 1178–1190. doi:10.1007/s00425-005-0165-0.
  • Murakami, T., K. Ise, M. Hayakawa, S. Kamei, and S. Takagi. 1989. “Stabilities of Metal Complexes of Mugineic Acids and Their Specific Affinities for iron(III).” Chemistry Letters, 12: 2137–2140.
  • Murata, Y., J. F. Ma, N. Yamaji, D. Ueno, K. Nomoto, and T. Iwashita. 2006. “A Specific Transporter for iron(III)-phytosiderophore in Barley Roots.” The Plant Journal 46 (4): 563–572. doi:10.1111/j.1365-313X.2006.02714.x.
  • Nelson, C. J., R. Alexova, R. P. Jacoby, and A. H. Millar. 2014. “Proteins with High Turnover Rate in Barley Leaves Estimated by Proteome Analysis Combined with in Planta Isotope Labeling.” Plant Physiology 2 (1): 91–108. doi:10.1104/pp.114.243014.
  • Nevo, R., D. Charuvi, O. Tsabari, and Z. Reich. 2012. “Composition, Architecture and Dynamics of the Photosynthetic Apparatus in Higher Plants.” The Plant Journal 70 (1): 157–176. doi:10.1111/j.1365-313X.2011.04876.x.
  • Nishio, J. N., S. E. Taylor, and N. Terry. 1985. “Changes in Thylakoid Galactolipids and Proteins during Iron Nutrition-mediated Development.” Plant Physiology 77 (3): 705–711. doi:10.1104/pp.77.3.705.
  • Nishiyama, R., M. Kato, S. Nagata, S. Yanagisawa, and T. Yoneyama. 2012. “Identification of Zn-nicotianamine and Fe-2ʹ⸍deoxymugineic Acid in the Phloem Sap from Rice Plants (Oryza Sativa L.).” Plant and Cell Physiology 53 (2): 381–390. doi:10.1093/pcp/pcr188.
  • Nozoye, T., S. Nagasaka, T. Kobayashi, M. Takahashi, Y. Sato, Y. Sato, N. Uozumi, H. Nakanishi, and N. K. Nishizawa. 2011. “Phytosiderophore Efflux Transporters are Crucial for Iron Acquisition in Graminaceous Plants.” Journal of Biological Chemistry 286 (7): 5446–5454. doi:10.1074/jbc.M110.180026.
  • Nozoye, T., S. Nagasaka, T. Kobayashi, M. Takahashi, Y. Sato, N. Uozumi, H. Nakanishi, and N. K. Nishizawa. 2015. “The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice.” Journal of Biological Chemistry 290 (46): 27688–27699. doi:10.1074/jbc.M114.635193.
  • Nozoye, T., N. von Wirén, Y. Sato, T. Higashiyama, H. Nakanishi, and N. K. Nishizawa. 2019. “Characterization of the Nicotianamine Exporter ENA1 in Rice.” Frontiers in Plant Science 10: 502. doi:10.3389/fpls.2019.00502.
  • Oertli, J. J., and L. Jacobson. 1960. “Some Quantitative Considerations in Iron Nutrition of Higher Plants.” Plant Physiology 35 (5): 683–688. doi:10.1104/pp.35.5.683.
  • Oparka, K. J., and S. Santa Cruz. 2000. “THE GREATE SCAPE: Phloem Transport and Unloading of Macromolecules.” . Annual Review of Plant Physiology and Plant Molecular Biology 51 (1): 323–347. doi:10.1146/annurev.arplant.51.1.323.
  • Pottier, M., C. Masclaux-Daubresse, K. Yoshimoto, and S. Thomine. 2014. “Autophagy as a Possible Mechanism for Micronutrient Remobilization from Leaves to Seeds.” Frontiers in Plant Science 5 (Article): 11. doi:10.3389/fpls.2014.00011.
  • Raven, J. A., M. C. W. Evans, and R. E. Korb. 1999. “The Role of Trace Metals in Photosynthetic Electron Transport in O2-evolving Organisms.” Photosynthesis Research 60 (2/3): 111–149. doi:10.1023/A:1006282714942.
  • Rhodes, M. J. C., and E. W. Yemm. 1966. “The Development of Chloroplasts and Photosynthetic Activities in Young Barley Leaves.” New Phytologist 65 (3): 331–342. doi:10.1111/j.1469-8137.1966.tb06369.x.
  • Rodríguez-Celma, J., I. C. Pan, W. Li, P. Lan, T. J. Buckhout, and W. Schmidt. 2013. “The Transcriptional Response of Arabidopsis Leaves to Fe Deficiency.” Frontiers in Plant Science 4 (Article): 276. doi:10.3389/fpls.2013.00276.
  • Saito, A., T. Iino, K. Sonoike, E. Miwa, and K. Higuchi. 2010. “Remodeling of the Major Light-harvesting Antenna Protein of PSII Protects the Young Leaves of Barley (Hordeum Vulgare L.) From Photoinhibition under Prolonged Iron Deficiency.” Plant and Cell Physiology 51 (12): 2013–2030. doi:10.1093/pcp/pcq160.
  • Saito, A., M. Shimizu, H. Nakamura, S. Maeno, R. Katase, E. Miwa, K. Higuchi, and K. Sonoike. 2014. “Fe Deficiency Induces Phosphorylation and Translocation of Lhcb1 in Barley Thylakoid Membranes.” FEBS Letters 585 (12): 2042–2048. doi:10.1016/j.febslet.2014.04.031.
  • Sasaki, A., N. Yamaji, K. Yokosho, and J. F. Ma. 2012. “Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice.” The Plant Cell 24 (5): 2155–2167. doi:10.1105/tpc.112.096925.
  • Schuler, M., R. Rellán-Álvarez, C. Fink-Straube, J. Abadía, and P. Bauer. 2012. “Nicotianamine Functions in the Phloem-Based Transport of Iron to Sink Organs, in Pollen Development and Pollen Tube Growth in Arabidopsis.” The Plant Cell 24 (6): 2380–2400. doi:10.1105/tpc.112.099077.
  • Shi, R., G. Weber, J. Köster, M. Reza-Hajirezaei, C. Zou, F. Zhang, and N. von Wirén. 2012. “Senescence-induced Iron Mobilization in Source Leaves of Barley (Hordeum Vulgare) Plants.” New Phytologist 195 (2): 372–383. doi:10.1111/j.1469-8137.2012.04165.x.
  • Shionoya, S., M. Kobayashi, S. Tsunoda, C. Funato, and M. Tadaki. 1959. “Studies on the Manganese and Iron Deficiency in Upland Crops.” Spec. Res. Rep. Gunma Pref. Agric. Sta., Japan 2: 1–74.
  • Spiller, S., and N. Terry. 1980. “Limiting Factors in Photosynthesis. II. Iron Stress Diminishes Photochemical Capacity by Reducing the Number of Photosynthetic Units.” Plant Physiology 65 (1): 121–125. doi:10.1104/pp.65.1.121.
  • Stacey, M. G., A. Patel, W. E. McClain, M. Mathieu, M. Remley, E. E. Rogers, W. Gassmann, D. G. Blevins, and G. Stacey. 2008. “The Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds.” Plant Physiology 146 (2): 589–601. doi:10.1104/pp.107.108183.
  • Stephan, U. W., I. Schmidke, V. W. Stephan, and G. Scholz. 1996. “The Nicotianamine Molecule Is Made-to-measure for Complexation of Metal Micronutrients in Plants.” BioMetals 9 (1): 84–90. doi:10.1007/BF00188095.
  • Sugiura, Y., H. Tanaka, Y. Mino, T. Ishida, N. Ota, M. Inoue, K. Nomoto, H. Yoshioka, and T. Takemoto. 1981. “Structure, Properties, and Transport Mechanism of iron(III) Complex of Mugineic Acid, a Possible Phytosiderophore.” Journal of the American Chemical Society 103 (23): 6979–6982. doi:10.1021/ja00413a043.
  • Takagi, S. 1966. “Studies on the Physiological Significance of Flooded Soil Condition in Rice Plant Growth ‒ with Special Reference to Flooding-induced Chlorosis of Rice Seedlings ‒.” Bull. Inst. Agr. Res. Tohoku Univ 18: 1–158.
  • Takagi, S. 1976. “Naturally Occurring Iron-chelating Compounds in Oat- and Rice-root Washings I. Activity Measurement and Preliminary Characterization.” Soil Science and Plant Nutrition 22 (4): 423–433. doi:10.1080/00380768.1976.10433004.
  • Takagi, S., S. Kamei, and M.-H. Yu. 1988. “Efficiency Iron Extraction from Soil by Mugineic Acid Family Phytosiderophores.” Journal of Plant Nutrition 11 (6–11): 643–651. doi:10.1080/01904168809363830.
  • Takagi, S., K. Nomoto, and T. Takemoto. 1984. “Physiological Aspect of Mugineic Acid, a Possible Phytosiderophore of Graminaceous Plants.” Journal of Plant Nutrition 7 (1–5): 469–477. doi:10.1080/01904168409363213.
  • Takemoto, T., K. Nomoto, S. Fushiya, R. Ouchi, G. Kusaka, H. Hikino, S. Takagi, Y. Matsuura, and M. Kakudo. 1978. “Structure of Mugineic Acid, a New Amino Acid Possessing an Iron-chelating Activity from Roots Washings of Water-cultured Hordeum Vulgare L.” Proceedings of the Japan Academy, Series B 54 (B): 469–478. doi:10.2183/pjab.54.469.
  • Tegeder, M. 2014. “Transporters Involved in Source and Sink Partitioning of Amino Acids and Ureides: Opportunities for Crop Improvement.” Journal of Experimental Botany 65 (7): 1865–1878. doi:10.1093/jxb/eru012.
  • Terry, N., and J. Abadía. 1986. “Function of Iron in Chloroplasts.” Journal of Plant Nutrition 9 (3): 609–646. doi:10.1080/01904168609363470.
  • Tsukamoto, T., H. Nakanishi, H. Uchida, S. Watanabe, S. Matsuhashi, S. Mori, and N. K. Nishizawa. 2009. “52Fe Translocation in Barley as Monitored by a Positron-emitting Tracer Imaging System (PETIS): Evidence for the Direct Translocation of Fe from Roots to Young Leaves via Phloem.” Plant and Cell Physiology 50 (1): 48–57. doi:10.1093/pcp/pcn192.
  • Van Bel, A. J. E. 2003. “The Phloem, a Miracle of Ingenuity.” Plant, Cell & Environment 26 (1): 125–149. doi:10.1046/j.1365-3040.2003.00963.x.
  • von Wettstein, D., S. Gough, and C. G. Kannangara. 1995. “Chlorophyll Biosynthesis.” The Plant Cell 7 (7): 1039–1057. doi:10.2307/3870056.
  • von Wirén, N., S. Mori, H. Marshner, and V. Römheld. 1994. “Iron Inefficiency in Maize Mutant Ys1 (Zea Mays L. Cv Yellow-Stripe) Is Caused by a Defect in Uptake of Iron Phytosiderophores.” Plant Physiology 106 (1): 71–77. doi:10.1104/pp.106.1.71.
  • Wada, S., Y. Hayashida, M. Izumi, T. Kurusu, S. Hanamata, K. Kanno, S. Kojima, et al. 2015. “Autophagy Supports Biomass Production and Nitrogen Use Efficiency at the Vegetative Stage in Rice.” Plant Physiology 168 (1): 60–73. DOI:10.1104/pp.15.00242.
  • Weber, G., N. von Wirén, and H. Hayen. 2008. “Investigation of Ascorbate-mediated Iron Release from Ferric Phytosiderophores in the Presence of Nicotianamine.” Biometals 21 (5): 503–513. doi:10.1007/s10534-008-9137-8.
  • Willis, L. G., and J. O. Carrero. 1923. “Influence of Some Nitrogenous Fertilizers on the Development of Chlorosis in Rice.” Journal of Agricultural Research 24: 643–640.
  • Yehuda, Z., M. Shenker, H. Römheld, H. Marschner, Y. Hadar, and Y. Chen. 1996. “The Role of Ligand Exchange in the Uptake of Iron from Microbial Siderophores by Gramineous Plants.” Plant Physiology 112 (3): 1273–1280. doi:10.1104/pp.112.3.1273.
  • Yokosho, K., N. Yamaji, D. Ueno, N. Mitani, and J. F. Ma. 2009. “OsFRDL1 Is a Citrate Transporter Required for Efficient Translocation of Iron in Rice.” Plant Physiology 149 (1): 297–305. doi:10.1104/pp.108.128132.
  • Yoneyama, T., and T. Ariga 2016: “Chemical Forms of Cadmium, Zinc, and Iron in the Phloem Saps from Rice (Oryza Sativa L.) And Castor Bean (Ricinus Communis L.).” 18th International Symposium on Iron Nutrition and Interaction in Plants. p. S4-OR-02. Madrid, Spain.
  • Yoneyama, T., S. Ishikawa, and S. Fujimaki. 2015. “Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza Sativa L.) During Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.” International Journal of Molecular Sciences 16 (8): 19111–19129. doi:10.3390/ijms160819111.
  • Yoneyama, T., F. Tanno, J. Tatsumi, and T. Mae. 2016. “Whole-plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza Sativa L.) As Revealed through the Production of 350 Grains from A Germinated Seed over 150 Days: A Review and Synthesis.” Frontiers in Plant Science 7: 1151. doi:10.3389/fpls.2016.01151.
  • Yoshida, T., S. Kawai, and S. Takagi. 2004. “Detection of the Regions of Phytosiderophore Release from Barley Roots.” Soil Science and Plant Nutrition 50 (7): 1111–1114. doi:10.1080/00380768.2004.10408582.
  • Zhai, Z., S. R. Gayomba, H. Jung, N. K. Vimalakumari, M. Piñeros, E. Craft, M. A. Rutzke, et al. 2014. “OPT3 Is a Phloem-Specific Iron Transporter that Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis.” The Plant Cell 26 (5): 2249–2264. DOI:10.1105/tpc.114.123737.
  • Zhang, Y., Y. H. Xu, H. Y. Yi, and J. M. Gong. 2012. “Vacuolar Membrane Transporters OsVIT1 and OsVIT2 Modulate Iron Translocation between Flag Leaves and Seeds in Rice.” The Plant Journal 72 (3): 400–410. doi:10.1111/j.1365-313X.2012.05088.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.