656
Views
2
CrossRef citations to date
0
Altmetric
Special Section - Soil C, N and CLUM

Influence of Azolla incorporation and/or dual cropping on CH4 and N2O emission from a paddy field

ORCID Icon, , ORCID Icon, , , ORCID Icon, & show all
Pages 246-255 | Received 16 Jul 2021, Accepted 24 Feb 2022, Published online: 10 Mar 2022

References

  • Anastasi, C., M. Dowding, and V. J. Simpson. 1992. “Future CH4 Emissions from Rice Production.” Journal of Geophysical Research 97 (D7): 7521–7525. doi:10.1029/92JD00157.
  • Basche, A. D., F. E. Miguez, T. C. Kaspar, and M. J. Castellano. 2014. “Do Cover Crops Increase or Decrease Nitrous Oxide Emissions? A Meta-Analysis.” Journal of Soil and Water Conservation 69 (6): 471–482. doi:10.2489/jswc.69.6.471.
  • Bharati, K., S. R. Mohanty, D. P. Singh, V. R. Rao, and T. K. Adhya. 2000. “Influence of Incorporation or Dual Cropping of Azolla on Methane Emission from a Flooded Alluvial Soil Planted to Rice in Eastern India.” Agriculture, Ecosystems & Environment 79 (1): 73–83. doi:10.1016/S0167-8809(99)00148-6.
  • Bista, B., and S. Dahal. 2018. “Cementing the Organic Farming by Green Manures.” International Journal of Applied Sciences and Biotechnology 6 (2): 87–96. doi:10.3126/ijasbt.v6i2.20427.
  • Butterbach-Bahl, K., E. M. Baggs, M. Dannenmann, R. Kiese, and S. Zechmeister-Boltenstern. 2013. “Nitrous Oxide Emissions from Soils: How Well Do We Understand the Processes and Their Controls?” Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1621): 20130122. doi:10.1098/rstb.2013.0122.
  • Cannell, R. Q., and J. M. Lynch. 1984. “Possible Adverse Effects of Decomposing Crop Residues on Plant Growth , and .” In Organic Matter and Rice, edited by F. N. Ponnamperuma and S. Banta, 455–475. Los Banos, Laguna, Philippines: International Rice Research Institute.
  • Chen, G. X., G. Huang, B. Huang, J. Wu, K. W. Yu, H. Xu, X. Xue, and Z. Wang. 1995. “CH4 and N2O Emission from a Rice Field and Effect of Azolla and Fertilization on Them.” Chinese Journal of Applied Ecology 6 (4): 378–382.
  • Chen, G. X., G. H. Huang, B. Huang, K. W. Yu, J. Wu, and H. Xu. 1997. “Nitrous Oxide and Methane Emissions from Soil–Plant Systems.” Nutrient Cycling in Agroecosystems 49 (1): 41–45. doi:10.1023/A:1009758900629.
  • Cheng, W., H. Sakai, A. Hartley, K. Yagi, and T. Hasegawa. 2008. “Increased Night Temperature Reduces the Stimulatory Effect of Elevated Carbon Dioxide Concentration on Methane Emission from Rice Paddy Soil.” Global Change Biology 14 (3): 644–656. doi:10.1111/j.1365-2486.2007.01532.x.
  • Cheng, W., H. Sakai, K. Yagi, and T. Hasegawa. 2009. “Interactions of Elevated [CO2] and Night Temperature on Rice Growth and Yield.” Agricultural and Forest Meteorology 149 (1): 51–58. doi:10.1016/j.agrformet.2008.07.006.
  • Cheng, W., M. Takei, C. Sato, V. Kautsar, Y. Sasaki, S. Sato, K. Tawaraya, and H. Yasuda. 2015. “Combined Use of Azolla and Loach Suppressed Paddy Weeds and Increased Organic Rice Yield: Second Season Results.” Journal of Wetlands Environmental Management 3 (1): 1–13. doi:10.20527/jwem.v3i1.3.
  • Cheng, W., K. Yagi, H. Sakai, and K. Kobayashi. 2006. “Effects of Elevated Atmospheric CO2 Concentrations on CH4 and N2O Emission from Rice Soil: An Experiment in Controlled-Environment Chambers.” Biogeochemistry 77 (3): 351–373. doi:10.1007/s10533-005-1534-2.
  • Cheng, W., K. Yagi, H. Xu, H. Sakai, and K. Kobayashi. 2005. “Influence of Elevated Concentrations of Atmospheric CO2 on CH4 and CO2 Entrapped in Rice-Paddy Soil.” Chemical Geology 218 (1–2): 15–24. doi:10.1016/j.chemgeo.2005.01.016.
  • Eagle, A. J., and L. P. Olander. 2012. “Greenhouse Gas Mitigation with Agricultural Land Management Activities in the United States—A Side-by-Side Comparison of Biophysical Potential.” Advances in Agronomy 115: 79–179. doi:10.1016/B978-012-394276-0.00003-2.
  • Fernandes, S. O., P. A. Loka Bharathi, P. C. Bonin, and V. D. Michotey. 2010. “Denitrification: An Important Pathway for Nitrous Oxide Production in Tropical Mangrove Sediments (Goa, India).” Journal of Environmental Quality 39 (4): 1507–1516. doi:10.2134/jeq2009.0477.
  • Gao, X., A. Lv, S. Wang, S. Liantai, P. Zhou, and Y. An. 2016. “Greenhouse Gas Intensity and Net Ecosystem Carbon Budget following the Application of Green Manures in Rice Paddies.” Nutrient Cycling in Agroecosystems 106 (2): 169–183. doi:10.1007/s10705-016-9797-7.
  • Huang, Y., R. Sass, and F. Fisher. 1997. “Methane Emission from Texas Rice Paddy Soils. 2. Seasonal Contribution of Rice Biomass Production to CH4 Emission.” Global Change Biology 3 (6): 491–500. doi:10.1046/j.1365-2486.1997.00106.x.
  • Hwang, H. Y., G. W. Kim, S. Y. Kim, M. M. Haque, M. I. Khan, and P. J. Kim. 2017. “Effect of Cover Cropping on the Net Global Warming Potential of Rice Paddy Soil.” Geoderma 292 (April): 49–58. doi:10.1016/j.geoderma.2017.01.001.
  • IPCC. 2013. “Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.” In Climate Change 2013 – The Physical Science Basis by Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, 1535. Cambridge, UK and New York, NY, USA: Cambridge University Press. doi:10.1017/CBO9781107415324.
  • Itoh, M., S. Sudo, S. Mori, H. Saito, T. Yoshida, Y. Shiratori, S. Suga, et al. 2011. “Mitigation of Methane Emissions from Paddy Fields by Prolonging Midseason Drainage.” Agriculture, Ecosystems & Environment 141 (3–4): 359–372. doi:10.1016/j.agee.2011.03.019.
  • JSSSPN. 1986. Soil Normal Analysis Methods, Hakuyusha Press, Tokyo (In Japanese). Tokyo: Japanese Society of Soil Science and Plant Nutrition.
  • Kimani, S. M., P. O. Bimantara, S. Hattori, K. Tawaraya, S. Sudo, and W. Cheng. 2020. “Azolla Incorporation and Dual Cropping Influences CH4 and N2O Emissions from Flooded Paddy Ecosystems.” Soil Science and Plant Nutrition 66 (1): 152–162. doi:10.1080/00380768.2019.1705736.
  • Kimani, S. M., W. Cheng, T. Kanno, T. Nguyen-Sy, R. Abe, A. Z. Oo, K. Tawaraya, and S. Sudo. 2018. “Azolla Cover Significantly Decreased CH4 but Not N2O Emissions from Flooding Rice Paddy to Atmosphere.” Soil Science and Plant Nutrition 64 (1): 68–76. doi:10.1080/00380768.2017.1399775.
  • Kimura, M., Y. Miura, A. Watanabe, J. Murase, and S. Kuwatsuka. 1992. “Methane Production and Its Fate in Paddy Fields.” Soil Science and Plant Nutrition 38 (4): 665–672. doi:10.1080/00380768.1992.10416696.
  • Kollah, B., A. K. Patra, and S. R. Mohanty. 2016. “Aquatic Microphylla Azolla: A Perspective Paradigm for Sustainable Agriculture, Environment and Global Climate Change.” Environmental Science and Pollution Research 23 (5): 4358–4369. doi:10.1007/s11356-015-5857-9.
  • Li, C. 2007. “Quantifying Greenhouse Gas Emissions from Soils: Scientific Basis and Modeling Approach.” Soil Science & Plant Nutrition 53 (4): 344–352. doi:10.1111/j.1747-0765.2007.00133.x.
  • Lumpkin, T. A., and D. L. Plucknett. 1980. “Azolla: Botany, Physiology, and Use as a Green Manure.” Economic Botany 34 (2): 111–153. doi:10.1007/BF02858627.
  • Malyan, S. K., A. Bhatia, A. Kumar, D. K. Gupta, R. Singh, S. S. Kumar, R. Tomer, O. Kumar, and N. Jain. 2016. “Methane Production, Oxidation and Mitigation: A Mechanistic Understanding and Comprehensive Evaluation of Influencing Factors.” Science of the Total Environment 572 (December): 874–896. doi:10.1016/j.scitotenv.2016.07.182.
  • Minamikawa, K., T. Tokida, S. Sudo, and A. Chidthaisong. 2015. Guidelines for Measuring CH4 and N2O Emissions from Rice Paddies by a Manually Operated Closed Chamber Method. Tsukuba, Japan: National Institute for Agro-Environmental Sciences.
  • Mosier, A. R., A. D. Halvorson, G. A. Peterson, G. P. Robertson, and L. Sherrod. 2005. “Measurement of Net Global Warming Potential in Three Agroecosystems.” Nutrient Cycling in Agroecosystems 72 (1): 67–76. doi:10.1007/s10705-004-7356-0.
  • Oertel, C., J. Matschullat, K. Zurba, F. Zimmermann, and S. Erasmi. 2016. “Greenhouse Gas Emissions from Soils—A Review.” Geochemistry 76 (3): 327–352. doi:10.1016/j.chemer.2016.04.002.
  • Scheehle, E., and D. Kruger. 2006. “Global Anthropogenic Methane and Nitrous Oxide Emissions.” The Energy Journal 27 ( Special Issue #3): 33–44. doi:10.5547/0195-6574-EJ-VolSI2006-NoSI3-2.
  • Seck, P. A., A. Diagne, S. Mohanty, and M. C. S. Wopereis. 2012. “Crops that Feed the World 7: Rice.” Food Security 4 (1): 7–24. doi:10.1007/s12571-012-0168-1.
  • Senbayram, M., R. Chen, A. Budai, L. Bakken, and K. Dittert. 2012. “N2O Emission and the N2O/(N2O+N2) Product Ratio of Denitrification as Controlled by Available Carbon Substrates and Nitrate Concentrations.” Agriculture, Ecosystems & Environment 147 (January): 4–12. doi:10.1016/j.agee.2011.06.022.
  • Snyder, C. S., T. W. Bruulsema, T. L. Jensen, and P. E. Fixen. 2009. “Review of Greenhouse Gas Emissions from Crop Production Systems and Fertilizer Management Effects.” Agriculture, Ecosystems & Environment 133 (3): 247–266. doi:10.1016/j.agee.2009.04.021.
  • Sudo, S. 2006. “Method and Instrument for Measuring Atmospheric Gas.” Industrial Property Digital Library, Patent of Japan (No. 2006–275844).
  • van der Gon, H. A. C. D., and H. U. Neue. 1995. “Influence of Organic Matter Incorporation on the Methane Emission from a Wetland Rice Field.” Global Biogeochemical Cycles 9 (1): 11–22. doi:10.1029/94GB03197.
  • Wagner, G. M. 1997. “Azolla: A Review of Its Biology and Utilization.” The Botanical Review 63 (1): 1–26. doi:10.1007/BF02857915.
  • Watanabe, I., W. Ventura, G. Mascariña, and D. L. Eskew. 1989. “Fate of Azolla Spp. And Urea Nitrogen Applied to Wetland Rice (Oryza Sativa L.).” Biology and Fertility of Soils 8 (2): 102–110. doi:10.1007/BF00257752.
  • Wrage, N., G. L. Velthof, M. L. van Beusichem, and O. Oenema. 2001. “Role of Nitrifier Denitrification in the Production of Nitrous Oxide.” Soil Biology & Biochemistry 33 (12–13): 1723–1732. doi:10.1016/S0038-0717(01)00096-7.
  • Xu, H., B. Zhu, J. Liu, D. Li, Y. Yang, K. Zhang, Y. Jiang, Y. Hu, and Z. Zeng. 2017. “Azolla Planting Reduces Methane Emission and Nitrogen Fertilizer Application in Double Rice Cropping System in Southern China.” Agronomy for Sustainable Development 37 (4): 29. doi:10.1007/s13593-017-0440-z.
  • Yadav, R. K., G. Abraham, Y. V. Singh, and P. K. Singh. 2014. “Advancements in the Utilization of Azolla-Anabaena System in Relation to Sustainable Agricultural Practices.” Proceedings of the Indian National Science Academy 80 (2): 301–316. doi:10.16943/ptinsa/2014/v80i2/55108.
  • Yagi, K., and K. Minami. 1990. “Effect of Organic Matter Application on Methane Emission from Some Japanese Paddy Fields.” Soil Science and Plant Nutrition 36 (4): 599–610. doi:10.1080/00380768.1990.10416797.
  • Ying, Z., P. Boeckx, G. X. Chen, and O. Van Cleemput. 2000. “Influence of Azolla on CH4 Emission from Rice Fields.” Nutrient Cycling in Agroecosystems 58 (1–3): 321–326. doi:10.1023/A:1009871308968.
  • Zou, J., Y. Huang, Y. Qin, S. Liu, Q. Shen, G. Pan, Y. Lu, and Q. Liu. 2009. “Changes in Fertilizer-Induced Direct N2O Emissions from Paddy Fields during Rice-Growing Season in China between 1950s and 1990s.” Global Change Biology 15 (1): 229–242. doi:10.1111/j.1365-2486.2008.01775.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.